scholarly journals Special Issue on Climate Change and Land Conservation and Restoration: Advances in Economics Methods and Policies for Adaptation and Mitigation

2018 ◽  
Vol 47 (2) ◽  
pp. 195-200
Author(s):  
Sarah Cline ◽  
Sahan T. M. Dissanayake

Climate change will likely impact the ecosystem services and biodiversity generated from conserved land. Land conservation can also play a significant role in achieving cost-effective mitigation of greenhouse gas emissions. In this special issue we feature seven papers from the 2017 NAREA Workshop, “Climate Change and Land Conservation and Restoration: Advances in Economics Methods and Policies for Adaptation and Mitigation.” The articles include papers furthering the methodological frontier; portfolio optimization, dynamic rangeland stocking, and global timber harvest models, and those highlighting innovative applications; climate smart agricultural practices in Nigeria and Vietnam, welfare impacts on birding, and carbon and albedo pricing.

2019 ◽  
Vol 11 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
A. Mentzafou ◽  
A. Conides ◽  
E. Dimitriou

Abstract Coastal ecosystems are linked to socio-economic development, but simultaneously, are particularly vulnerable to anthropogenic climate change and sea level rise (SLR). Within this scope, detailed topographic data resources of Spercheios River and Maliakos Gulf coastal area in Greece, combined with information concerning the economic value of the most important sectors of the area (wetland services, land property, infrastructure, income) were employed, so as to examine the impacts of three SLR scenarios, compiled based on the most recent regional projections reviewed. Based on the results, in the case of 0.3 m, 0.6 m and 1.0 m SLR, the terrestrial zone to be lost was estimated to be 6.2 km2, 18.9 km2 and 31.1 km2, respectively. For each scenario examined, wetlands comprise 68%, 41% and 39% of the total area lost, respectively, reflecting their sensitivity to even small SLR. The total economic impact of SLR was estimated to be 75.4 × 106 €, 161.7 × 106 € and 510.7 × 106 € for each scenario, respectively (3.5%, 7.5% and 23.7% of the gross domestic product of the area), 19%, 17% and 8% of which can be attributed to wetland loss. The consequences of SLR to the ecosystem services provided are indisputable, while adaptation and mitigation planning is required.


2018 ◽  
Vol 40 (4) ◽  
pp. 343-361
Author(s):  
Michael Adetunji Ahove ◽  

Africa is the most vulnerable region of the world due to anthropogenic climate change challenges on account of dependence on nature for the sustenance of agriculture as her main source of income, high level of poverty, and low level of literacy. Climate change adaptation involves strategies of adjusting to the negative effects of climate change, while climate change mitigation involves techniques that help to reduce production of greenhouse gases through burning fossil fuels. The African worldview from the frontier of Nigerian epistemological and ontological perspectives as it finds expression in climate change adaptation and mitigation is built on the foundations of its relationship with nature, traditional religion and belief systems, agricultural practices, and some other day-to-day practices. Worldview analysis of the contemporary Nigerian has been conducted and classified into Original African, Westernized African, and Little Here-and-There African, a paradigm existing in Nigerians irrespective of level of Western education. What will be the fate of the younger Nigerian climate scientist in a globalized and technologically competitive world? This question gives rise to further discussion on the principles and application of the theory of Culturo-Techno-Contextual Approach as postulated by Peter A. Okebukola and applied to creating an environment for meaningful learning on climate change adaptation and mitigation for the future generations of Nigerians.


2018 ◽  
Vol 86 (2) ◽  
Author(s):  
Ali PRAMONO ◽  
. SADMAKA

Global warming and climate change are the world's major environmental, social and economic problems. The agricultural sector can act as an affected victim, greenhouse gas (GHG) contributor, and GHG absorber. Plantations have a very strategic role in the national action plan in GHG mitigation, because it has a great ability to absorb CO2. Therefore, it is necessary to determine the carbon stocks and GHG emissions from plantation management. The objectivesof the study wereto measure GHG emissions,to determine carbon stocks,and to define adaptation and mitigation strategies on climate change in existing coffee plantation systems. Gas samples were taken from 5 sampling points as replications by closedchamber method. Carbon stock estimation was done by destructive technique, including biomass of understorey and non-wood necromass. The results showed that the coffee plantations less than 10 years-oldat the study sites emitted 47 tons CO2-e/ha/year and stored carbon of 91.4 tons C/ha. Climate change adaptation strategies can be done by the application of good agricultural practices (GAP)andthe use of drought-tolerantclones, mulches,shade trees,multiple cropping systems, silt pitsand biophore techniques. The GHG mitigation can be done by the utilization of plantation waste as a source of organic fertilizer, biochar, animal feed, and bioenergy sources through the development of models of integration crop and livestock systems, as well as rejuvenation of plantation crops to increase carbon sinks and stocks.  [Keywords: climate change, carbon sequestration, coffee plantations] Abstrak Pemanasan global dan perubahan iklim menjadi masalah utama lingkungan, sosial dan ekonomi dunia hingga saat ini. Sektor pertanian dapat berperan sebagai korban terdampak, penyumbang Gas Rumah Kaca (GRK), dan penyerapGRK. Tanaman perkebunan mempunyai posisi sangat strategis dalam rencana aksi nasional di sektor pertanian, karena memiliki kemampuan besar dalam menyerap CO2. Oleh karena itu, pengukuran cadangan karbon dan emisi GRK dari pengelolaan perkebunan perlu dilakukan. Tujuan penelitian adalah untuk mengukur emisi GRK, menentukan cadangan karbon dan menetapkan strategi adaptasi dan mitigasi terhadap perubahan iklim pada sistem perkebunan kopi rakyat eksisting di Propinsi Nusa Tenggara Barat. Pengambilan contoh gas dilakukan di limatitik sampling dengan metode sungkup tertutup. Penghitungan cadangan karbon di atas permukaan tanah dilakukan dengan cara destruktifyang mencakup juga penetapan cadangan karbon biomassatanaman bawah dan biomassaserasah (ne-kromas non kayu). Hasil penelitian menunjukkan bahwa perkebunan kopi rakyat yang berumur kurang dari 10 tahun di lokasi penelitianmeng-emisikan karbon sebesar 47 ton CO2-e/ha/tahundan menyimpan cadangankarbon sebesar 91,4ton C/ha. Strategi adaptasi terhadap perubahan iklim dapat dilakukan dengan penerapan praktik Pertanian yang baik/ Good Agricultural Practices(GAP), penggunaan klon tahan kekeringan, penggunaan mulsa organik, pemanfaatanpohon penaungdan sistem tumpang sari, pembuatan rorak dan biopori.Mitigasi GRK dapat dilakukan dengan pemanfaatan limbah tanaman perkebunan sebagai sumber pupukorganik, arang (biochar), pakan ternak, dan sumber bioenergimelalui pengem-bangan model sistem integrasi tanaman dan ternak,serta peremajaan tanaman perkebunan yang sudah menurun produktivitasnya untuk meningkatkan serapan dan cadangankarbon. [Kata kunci :perubahan iklim, sekuestrasi karbon, perkebunan kopi]


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Suresh K. Kakraliya ◽  
Hanuman S. Jat ◽  
Tek B. Sapkota ◽  
Ishwar Singh ◽  
Manish Kakraliya ◽  
...  

Conventional rice–wheat (RW) rotation in the Indo-Gangetic Plains (IGP) of South Asia is tillage, water, energy, and capital intensive. Coupled with these, crop residue burning contributes significantly to greenhouse gas (GHG) emission and environmental pollution. So, to evaluate the GHG mitigation potential of various climate-smart agricultural practices (CSAPs), an on-farm research trial was conducted during 2014–2017 in Karnal, India. Six management scenarios (portfolios of practices), namely, Sc1—business as usual (BAU)/conventional tillage (CT) without residue, Sc2—CT with residue, Sc3—reduced tillage (RT) with residue + recommended dose of fertilizer (RDF), Sc4—RT/zero tillage (ZT) with residue + RDF, Sc5—ZT with residue + RDF + GreenSeeker + Tensiometer, and Sc6—Sc5 + nutrient-expert tool, were included. The global warming potential (GWP) of the RW system under CSAPs (Sc4, Sc5, and Sc6) and the improved BAU (Sc2 and Sc3) were 33–40% and 4–26% lower than BAU (7653 kg CO2 eq./ha/year), respectively. This reflects that CSAPs have the potential to mitigate GWP by ~387 metric tons (Mt) CO2 eq./year from the 13.5 Mha RW system of South Asia. Lower GWP under CSAPs resulted in 36–44% lower emission intensity (383 kg CO2 eq./Mg/year) compared to BAU (642 kg CO2 eq./Mg/year). Meanwhile, the N-factor productivity and eco-efficiency of the RW system under CSAPs were 32–57% and 70–105% higher than BAU, respectively, which reflects that CSAPs are more economically and environmentally sustainable than BAU. The wheat yield obtained under various CSAPs was 0.62 Mg/ha and 0.84 Mg/ha higher than BAU during normal and bad years (extreme weather events), respectively. Thus, it is evident that CSAPs can cope better with climatic extremes than BAU. Therefore, a portfolio of CSAPs should be promoted in RW belts for more adaptation and climate change mitigation.


Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. eaaw9256 ◽  
Author(s):  
Michael D. Morecroft ◽  
Simon Duffield ◽  
Mike Harley ◽  
James W. Pearce-Higgins ◽  
Nicola Stevens ◽  
...  

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the needs of people, to realize potential synergies and avoid conflict between different objectives.


2022 ◽  
Vol 14 (1) ◽  
pp. 569
Author(s):  
Valentina Fantin ◽  
Alessandro Buscaroli ◽  
Patrizia Buttol ◽  
Elisa Novelli ◽  
Cristian Soldati ◽  
...  

Soil organic carbon (SOC) plays a fundamental role in soil health, and its storage in soil is an important element to mitigate climate change. How to include this factor in Life Cycle Assessment studies has been the object of several papers and is still under discussion. SOC storage has been proposed as an additional environmental information in some applications of the Product Environmental Footprint (PEF). In the framework of wider activity aimed at producing the PEF of olive oil, the RothC model was applied to an olive cultivation located in Lazio region (Italy) to calculate the SOC storage and assess four scenarios representing different agricultural practices. RothC applicability, possible use of its results for improving product environmental performance, and relevance of SOC storage in terms of CO2eq compared to greenhouse gas emissions of the life-cycle of olive oil are discussed in this paper. According to the results, in all scenarios, the contribution in terms of CO2eq associated with SOC storage is remarkable compared to the total greenhouse gas emissions of the olive oil life-cycle. It is the opinion of the authors that the calculation of the SOC balance allows a more proper evaluation of the agricultural products contribution to climate change, and that the indications of the scenarios analysis are useful to enhance the environmental performance of these products. The downside is that the application of RothC requires additional data collection and expertise if compared to the execution of PEF studies.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2760
Author(s):  
Carles Ibáñez

Global environmental change is greatly disturbing rivers and estuaries by a number of stressors, among which water withdrawal, damming, pollution, invasive species, and climate change are the most worrying [...]


Sign in / Sign up

Export Citation Format

Share Document