scholarly journals Evaluation of the Risks of Contaminating Low Erucic Acid Rapeseed with High Erucic Rapeseed and Identification of Mitigation Strategies

Agriculture ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190 ◽  
Author(s):  
Douglas J. Warner ◽  
Kathleen A. Lewis

High erucic acid rapeseed (HEAR) oil is under increasing demand for various industrial applications. However, many growers are concerned that if they grow the crop, they will not be able to revert to other rapeseed varieties in the future due to the risk of erucic acid (EA) contamination of the harvested seed and inability to maintain acceptable erucic acid thresholds. This review considered published literature and, using the same criteria as that used to contain transgenic crops, aimed to identify the key risks of erucic acid contamination, broadly prioritise them and identify pragmatic mitigation options. Oilseed rape has a number of traits that increase the risk of low erucic acid rapeseed (LEAR) crops being contaminated with EA from HEAR varieties. The quantity of seed produced and the potential for seed dormancy coupled with partial autogamy (self-fertilisation) facilitate the establishment and persistence of volunteer and feral populations. The large quantities of pollen produced when the crop is in flower mean there is also a high potential for cross-pollination. Self-sown volunteer plants represent the highest potential contamination risk, followed by the presence of arable weeds (e.g., wild mustard) whose seeds are also high in EA. Other risks arise from the cross-pollination of compatible wild relatives and the mixing of seed prior to sowing. It is important that both HEAR and LEAR varieties are appropriately managed since risks and their potential for mitigation arise throughout the entire LEAR crop production process. The length of rotation, type of tillage, cultivar choice, buffer zones, effective weed management and basic machinery hygiene are all factors that can reduce the risk of erucic acid contamination of LEAR crops and maintain the required thresholds.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1297
Author(s):  
Chitralekha Shyam ◽  
Manoj Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Ravindra Solanki ◽  
...  

Brassica junceais a crucial cultivated mustard species and principal oilseed crop of India and Madhya Pradesh, grown for diverse vegetables, condiments, and oilseeds. Somaclonal variation was explored as a probable source of additional variability for the manipulation of fatty acids, especially low erucic acid contents that may be valuable for this commercially important plant species. The plantlets regenerated from tissue cultures (R0), their R1 generation and respective parental lines were compared for morpho-physiological traits and fatty acid profile for the probable existence of somaclonal variations. The first putative somaclone derived from genotype CS54 contained 5.48% and 5.52% erucic acid in R0 and R1 regenerants, respectively, compared to the mother plant (41.36%). In comparison, the second somaclone acquired from PM30 exhibited a complete absence of erucic acid corresponding to its mother plant (1.07%). These putative somaclones present a source of variation for exploitation in the development of future mustard crops with low erucic acid content.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


1974 ◽  
Vol 17 (3) ◽  
pp. 136-147 ◽  
Author(s):  
H. Vogtmann ◽  
D.R. Clandinin ◽  
R.T. Hardin

2010 ◽  
Vol 25 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Randy L. Anderson

AbstractWeeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in conventional farming has reduced herbicide use by 50% because weed density declines in cropland across time. In this paper, we suggest a 9-year rotation comprised of perennial forages and annual crops that will disrupt weed population growth and reduce weed density in organic systems. Lower weed density will also improve effectiveness of weed control tactics used for an individual crop. The rotation includes 3-year intervals of no-till, which will improve both weed population management and soil health. Even though this rotation has not been field tested, it provides an example of designing rotations to disrupt population dynamics of weeds. Also, producers may gain additional benefits of higher crop yield and increased nitrogen supply with this rotation design.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 551-561 ◽  
Author(s):  
Javid Gherekhloo ◽  
Mostafa Oveisi ◽  
Eskandar Zand ◽  
Rafael De Prado

Continuous use of herbicides has triggered a phenomenon called herbicide resistance. Nowadays, herbicide resistance is a worldwide problem that threatens sustainable agriculture. A study of over a decade on herbicides in Iran has revealed that herbicide resistance has been occurring since 2004 in some weed species. Almost all the results of these studies have been published in national scientific journals and in conference proceedings on the subject. In the current review, studies on herbicide resistance in Iran were included to provide a perspective of developing weed resistance to herbicides for international scientists. More than 70% of arable land in Iran is given over to cultivation of wheat, barley, and rice; wheat alone covers nearly 52%. Within the past 40 years, 108 herbicides from different groups of modes of action have been registered in Iran, of which 28 are for the selective control of weeds in wheat and barley. Major resistance to ACCase-inhibiting herbicides has been shown in some weed species, such as winter wild oat, wild oat, littleseed canarygrass, hood canarygrass, and rigid ryegrass. With respect to the broad area of wheat crop production and continuous use of herbicides with the sole mechanism of action of ACCase inhibition, the provinces of West Azerbaijan, Tehran, Khorasan, Isfahan, Markazi, and Semnan are at risk of resistance development. In addition, because of continuous long-term use of tribenuron-methyl, resistance in broadleaf species is also being developed. Evidence has recently shown resistance of turnipweed and wild mustard populations to this herbicide. Stable monitoring of fields in doubtful areas and providing good education and training for technicians and farmers to practice integrated methods would help to prevent or delay the development of resistance to herbicides.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Wanda Kuswanda ◽  
R. HAMDANI HARAHAP ◽  
HADI S. ALIKODRA ◽  
ROBERT SIBARANI

Abstract. Kuswanda W, Harahap RH, Alikodra JS, Sibarani R. 2020. Nest characteristics and populations of Tapanuli orangutans in Batangtoru Landscape, South Tapanuli District, Indonesia. Biodiversitas 21: 3398-3406. Tapanuli orangutan (Pongo tapanuliensis) has been threatened to extinction due to conflicts with humans. Information on the orangutan characteristics in conflict areas at the Batangtoru Landscape is needed. Our research aimed to analyze the characteristics of nests, nest trees, and estimation of orangutan populations in conservation forests and buffer zones to develop conflict mitigation strategies in the Batangtoru Landscape, South Tapanuli District. A line transect method was used to count orangutan nests on 49 transects, starting from June 2019 to January 2020. Data were analyzed with descriptive statistics, frequency tables, Spearman correlation (rho), and the equation by (van Schaick et al. 1995). Tapanuli orangutans make nests at the height of 14.01 meters (90% CI = 13.37-14.67 meters), and most use the main stem as nest support. Tree nests of 35 species (17 families) were identified, with the highest frequency in (Durio zibethinus Murray), especially in the buffer zone. Correlation between nest tree diameter, tree height, and canopy area was significant (p <0.01, n = 83). The estimated orangutan populations in conflict areas were 155 individuals (95% CI = 121-187), and the highest was found in Dolok Sibualbuali Nature Reserve buffer zones. Mitigation strategy of human-orangutan conflict that needs to be realized is the non-cash compensation guaranteeing the community does not disturb orangutans on their land. The compensation forms can be the provision of seedlings and fertilizer for plants, agricultural machinery, knowledge to land management, and orangutan ecotourism development. Nest and feed trees enrichment can be carried out in production forests bordering with conservation area.


Sign in / Sign up

Export Citation Format

Share Document