scholarly journals Gene Expression and Metabolite Profiling of Thirteen Nigerian Cassava Landraces to Elucidate Starch and Carotenoid Composition

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 424 ◽  
Author(s):  
Priscilla Olayide ◽  
Annabel Large ◽  
Linnea Stridh ◽  
Ismail Rabbi ◽  
Susanne Baldermann ◽  
...  

The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between β-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase β-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and β-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including β-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-ε-cyclase (LCYε), and β-carotenoid hydroxylase (CHYβ) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and β-carotene that could be candidates for biofortification by further breeding or plant biotechnological means.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 692 ◽  
Author(s):  
Aleck Kondwakwenda ◽  
Julia Sibiya ◽  
Rebecca Zengeni ◽  
Cousin Musvosvi ◽  
Samson Tesfay

Provitamin A maize (Zea mays L.) biofortification is an ideal complementary means of combating vitamin A deficiency (VAD) in sub-Saharan Africa where maize consumption is high coupled by high VAD incidences. However, drought remains a major abiotic constraint to maize productivity in this region. Comprehensive drought screening of initial breeding materials before advancing them is important to achieve genetic gain. In this study, 46 provitamin-A inbred lines were screened for drought tolerance in the greenhouse and field under drought and optimum conditions using β-carotene content (BCC), grain yield (GY), and selected morphophysiological and biochemical traits. The results revealed that BCC, morphophysiological and biochemical traits were effective in discriminating among genotypes. Number of ears per plant (EPP), stomatal conductance (Gs), delayed leaf senescence (SEN), leaf rolling (RL), chlorophyll content (CC) and free proline content (PC) proved to be ideal traits to use when indirectly selecting for GY by virtue of having relative efficiency of indirect selection values that are greater than unity and considerable genetic variances under either or both conditions. The findings of this study form the basis of initial germplasm selection when improving provitamin A maize for drought tolerance.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1909
Author(s):  
Daniso Beswa ◽  
Muthulisi Siwela ◽  
Eric O. Amonsou ◽  
Unathi Kolanisi

Provitamin A-biofortified maize could contribute to the alleviation of vitamin A deficiency (VAD), which is prevalent in sub-Saharan Africa due to a high consumption of starchy, maize-based diets. Four varieties of provitamin A biofortified maize were studied for grain colour, grain texture, thousand kernel weight, and hectolitre mass. Provitamin A biofortified maize stiff porridges were prepared and their retained provitamin A was determined using lutein, zeaxanthin, β-cryptoxanthin, and β-carotene (all-trans and cis isomers) as standards. Provitamin A concentration in the biofortified porridges ranged from 2.24 to 3.18 µg/g and retention from 91–105%. Descriptive sensory analysis and the 5-point facial hedonic test were used to evaluate the sensory quality of the porridges. The biofortified maize porridges were described as sticky, fine, with high intensity residual grain, and having a slightly bitter aftertaste with a cooked maize flavour and aroma, whereas the intensities of these attributes were insignificant in white maize porridge. About 33% of the consumer sample (N = 60) liked the porridges and 28% disliked the porridges, whilst approximately 38% of the consumers were neutral. The findings suggest that biofortified maize stiff porridge can deliver a significant amount of provitamin A to targeted consumers, but the acceptance of biofortified maize still needs to be improved on.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1786
Author(s):  
Sophie Graßmann ◽  
Olga Pivovarova-Ramich ◽  
Andrea Henze ◽  
Jens Raila ◽  
Yaw Ampem Amoako ◽  
...  

In sub-Saharan Africa, vitamin A deficiency constitutes a severe health problem despite various supplementation and food fortification programs. Given that the intake of preformed vitamin A from animal products remains low in these countries, an efficient metabolization of plant-based provitamin A carotenoids is essential. Previously, adolescents in rural Ghana have shown high total plasma carotenoid concentrations, while 36% had a vitamin A deficiency (defined as plasma retinol < 0.7 µmol/L). Hence, the aim of this cross-sectional study was to identify the relationships between variants in the β-carotene 15,15’-oxygenase (BCO1) gene and plasma carotenoid concentrations among 189 15-year-old girls and boys in rural Ghana. BCO1 rs6564851, rs7500996, rs10048138 and PKD1L2 rs6420424, and rs8044334 were typed, and carotenoid concentrations were compared among the different genotypes. G allele carriers of rs6564851 (53%) showed higher plasma carotenoid concentrations than T allele carriers (median (interquartile range): 3.07 (2.17–4.02) vs. 2.59 (2.21–3.50) µmol/L, p-value = 0.0424). This was not explained by differences in socio-demographic or dietary factors. In contrast, no differences in plasma retinol concentrations were observed between these genotypes. Pending verification in independent populations, the low conversion efficiency of provitamin A carotenoids among rs6564851 G allele carriers may undermine existing fortification and supplementation programs to improve the vitamin A status in sub-Saharan Africa.


2009 ◽  
Vol 102 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Julie A. Howe ◽  
Bussie Maziya-Dixon ◽  
Sherry A. Tanumihardjo

Efforts to increase β-carotene in cassava have been successful, but the ability of high-β-carotene cassava to prevent vitamin A deficiency has not been determined. Two studies investigated the bioefficacy of provitamin A in cassava and compared the effects of carotenoid content and variety on vitamin A status in vitamin A-depleted Mongolian gerbils (Meriones unguiculatus). Gerbils were fed a vitamin A-free diet 4 weeks prior to treatment. In Expt 1, treatments (ten gerbils per group) included 45 % high-β-carotene cassava, β-carotene and vitamin A supplements (intake matched to high-β-carotene cassava group), and oil control. In Expt 2, gerbils were fed cassava feeds with 1·8 or 4·3 nmol provitamin A/g prepared with two varieties. Gerbils were killed after 4 weeks. For Expt 1, liver vitamin A was higher (P < 0·05) in the vitamin A (1·45 (sd 0·23) μmol/liver), lower in the control (0·43 (sd 0·10) μmol/liver), but did not differ from the β-carotene group (0·77 (sd 0·12) μmol/liver) when compared with the high-β-carotene cassava group (0·69 (sd 0·20) μmol/liver). The bioconversion factor was 3·7 μg β-carotene to 1 μg retinol (2 mol:1 mol), despite 48 % cis-β-carotene [(Z)-β-carotene] composition in cassava. In Expt 2, cassava feed with 4·3 nmol provitamin A/g maintained vitamin A status. No effect of cassava variety was observed. Serum retinol concentrations did not differ. β-Carotene was detected in livers of gerbils receiving cassava and supplements, but the cis-to-trans ratio in liver differed from intake. Biofortified cassava adequately maintained vitamin A status and was as efficacious as β-carotene supplementation in the gerbil model.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1625
Author(s):  
Innocent Iseghohi ◽  
Ayodeji Abe ◽  
Silvestro Meseka ◽  
Wende Mengesha ◽  
Melaku Gedil ◽  
...  

Vitamin A deficiency (VAD) is a serious problem in sub-Saharan Africa (SSA) and other parts of the world. Understanding the effect of marker-based improvement (MARS) of two maize synthetics (HGA and HGB) representing different heterotic groups on their agronomic performance, carotenoid content, and combining abilities could help identify suitable sources to develop divergent inbred lines for optimizing heterosis. This study involved three selection cycles each of the two synthetics and their nine varietal-cross hybrids together with a released check variety was conducted across four diverse locations in Nigeria in 2018 and 2019. Environment and hybrid effects were significant on grain yield and other agronomic traits as well as provitamin A content and other carotenoids. Genetic improvement per cycle of MARS in the parental synthetics was 15% for provitamin A, 25% for β-carotene and 26% for lutein in HGA and 4% for grain yield, 3% for zeaxanthin and 5% for α-carotene in HGB. Grain yield and agronomic traits of the two maize synthetics were controlled by additive and non-additive gene effects, while provitamin A content and other carotenoids were mainly controlled by additive gene effects. Some selection cycles which were high in grain yield and provitamin A content were identified as potential sources of new and divergent maize inbred lines in maize breeding programs. Some varietal-cross hybrids expressed significant mid-parent heterosis for grain yield and moderate mid-parent heterosis for provitamin A, β-carotene and xanthophylls. These hybrids could be commercialized at reasonable prices to small-scale farmers in rural areas that are most affected by vitamin A deficiency.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1792-1792
Author(s):  
Hawi Debelo ◽  
Marc Albertsen ◽  
Marissa Simon ◽  
Ping Che ◽  
Mario Ferruzzi

Abstract Objectives Sorghum is a critical staple crop in Sub-Saharan Africa and has been included in biofortification efforts to enhance shortfall micronutrient content including provitamin A carotenoids (pVA), zinc and iron. The purpose of this study was to evaluate progress in enhancement of pVA, tocochromanol (vitamin E), iron and zinc content as well as improvements in stability from a new generation of transgenic biofortified sorghum events in order to prioritize selection for translation to food systems. Methods Transgenic sorghum events (n = 16) from three different genotypic backgrounds developed to increase provitamin A biosynthesis (PSY1 + CRTI genes, +/− CRTB gene) and increase tocochromanol accumulation (HGGT gene) for vitamin A stability were characterized for carotenoid and tocochromanol profile using liquid chromatography coupled with diode array detection. Events were compared against their respective null segregants and wild type (WT) sorghum. Mineral content of sorghum lines and those developed to increase iron and zinc accumulation (YSL2 + NAS2 genes) was assessed by inductively coupled plasma - optical emission spectrometry. Storage stability of carotenoids and tocochromanols was assessed under controlled conditions (25°C; 57%RH) over 3 months. Results Total pVA content from transgenic sorghum (5.9 ± 0.1 – 28.6 ± 0.6 mg/gFW) was significantly different (P &lt; 0.05) from null (0.4 ± 0 – 1.2 ± 0 mg/gFW) or WT (0.73 ± 0.2 mg/gFW). A general increase in total tocochromanol accumulation was observed in transgenic sorghum events (14.9 ± 0.8 – 36.2 ± 1.3 mg/gFW) compared to null/WT (14.2 ± 0.5 – 32.4 ± 4.4 mg/gFW) with significant differences observed among transgenic events across different sorghum genotypes (P &lt; 0.05). Mineral accumulation varied among sorghum events with levels ranging from 28.44 ± 1.9 – 48.85 ± 4.9 mg/g and 27.65 ± 4.5 – 63.59 ± 13.4 mg/g FW for zinc and iron respectively. Highest level of zinc and iron was observed in Tx430 sorghum event. Conclusions Findings from this study highlight progress in pVA levels of transgenic biofortified sorghum and the potential for increased vitamin E levels to improve pVA stability over storage. Studies are underway to characterize the bioaccessibility of pVA carotenoids, Fe and Zn from these events. Funding Sources Pioneer Foundation.


Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 177 ◽  
Author(s):  
Toluwalope Emmanuel Eyinla ◽  
Busie Maziya-Dixon ◽  
Oladeji Emmanuel Alamu ◽  
Rasaki Ajani Sanusi

Plant breeding efforts in sub-Saharan Africa (SSA) have produced biofortified cassava with high carotenoid content to address vitamin A deficiencies (VAD). Since carotenoids in foods are easily depleted during processing, the retention of β-carotene in some newly released cassava varieties is under query. From four of these new varieties, two commonly consumed products (gari and its dough) were processed according to standard methods. Retention of β-carotene was then probed after applying fermentation periods of a day and three days. The possible contribution of the products to Vitamin A intake in children, adolescents, and women was also assessed. The concentration of β-carotene in fresh Cassava roots ranged from 5.32 to 7.81 µg/g. The percentage retention ranged from 14.4 to 29.3% and 10 to 21.7% in gari fermented for one and three days respectively. The impact of varietal difference and length of fermentation was significant on retention in the intermediate and final products (p < 0.001). When compared with dietary intake data, cooking biofortified gari into its dough reduced Vitamin A intake in most varieties. We conclude that processing Cassava into gari (especially its dough) could hinder the retention of β-carotene however some varieties have retention advantage over others irrespective of the initial concentration in their fresh roots.


2021 ◽  
Vol 8 ◽  
Author(s):  
Omololami Tolulope Akinsola ◽  
Emmanuel Oladeji Alamu ◽  
Bolanle Omolara Otegbayo ◽  
Abebe Menkir ◽  
Busie Maziya-Dixon

Provitamin-A maize (PVA) with increased carotenoid content obtained through conventional breeding techniques has been largely successful in sub-Saharan Africa. This resulted in a need to evaluate their susceptibility, retention, and nutritional content during processing into local foods. This study evaluated the chemical, carotenoid composition, and retention of PVA, the phytic acid content in ogi powder, and the sensory perception of ogi porridge produced traditionally from the three novel PVA maize genotypes (PVA SYN HGAC0 Maize 1; PVA SYN HGBC0 Maize 2; and PVA SYN HGBC1 Maize 3) and one yellow maize variety (control). Chemical composition analyses showed significant differences (p &lt; 0.05) in all parameters. The PVA ranged from 5.96 to 8.43 μg/g in Maize 2 and 3 before processing while the true percentage retention after processing into ogi powder ranged from 20.25 to 37.54% in Maize 1 and 2, respectively. In addition, there was a reduction in the phytate content of ogi powder, and Maize 2 contained the lowest (2.78 mg/g from 4.09 mg/g). Maize 2 genotype had the highest vitamin A contribution; it can meet 18.3% of the vitamin A requirements in children while in adult males and females (&gt;19 years), 6.2 and 7.7%, respectively. Sensory evaluation showed that the ogi 3 porridge (Maize 3) was the most acceptable, followed by Maize 2. In conclusion, Maize 2 had the highest PVA, true retention of carotenoid, vitamin A contributions, and the second most acceptable ogi porridge with the lowest phytate content.


Author(s):  
M. S. Afolabi ◽  
O. B. Bello ◽  
G. O. Agbowuro ◽  
C. O. Aremu ◽  
M. O. Akoroda

Roots of orange-fleshed sweet potato varieties currently available in Nigeria contain high quantities of β-carotene or pro-vitamin A but have high moisture content. These varieties have been found to be a cheap and crucially important remedy for vitamin A deficiency. The cream or white-fleshed varieties, on the other hand, have a sweet taste with high dry matter content, giving a dry texture, a quality trait preferred in Nigeria. Development of sweet potato genotypes that can combine these two important quality traits is the objective of this breeding work. A diallel experiment using six parental sweet potato genotypes crossed in all possible combinations were carried out and thirty progenies were evaluated for beta carotene (β-carotene) and dry matter content in Landmark University, Omu Aran, Kwara State, Nigeria. The 30 F1 progenies along with their parental lines were planted in the same field trial. The trial was laid out in 6 x 6 triple lattice in two replications. Highly significant (P≤ 0.01) differences were observed among the genotypes for the traits. The average β-carotene content among the progenies was 2.86 (mg/100g.f.w) while the dry matter cttgontent had a mean value of 31.89%. The cross progenies 199024.2 x Excel had the highest beta carotene (14.37mg/100g.f.w) content with the highest dry matter content (40.10%) and are therefore recommended for further evaluation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Edmore Gasura ◽  
Francisca Matsaure ◽  
Peter Sekwena Setimela ◽  
Joyful Tatenda Rugare ◽  
Cacious Stanford Nyakurwa ◽  
...  

In sub-Saharan Africa (SSA), vitamin A deficiency (VAD) is a major cause of blindness in children under 5 years. Sweetpotato (Ipomea batatas L.) is widely grown in this region, and pro-vitamin A varieties could help to combat such problems. Fourteen newly introduced orange-fleshed sweetpotato (OFSP) varieties from the International Potato Centre (CIP) and two local checks were evaluated at four environments using a 4 × 4 triple-lattice design for total tuber yield, marketable yield, unmarketable yield, total tuber numbers, marketable tuber numbers, unmarketable tuber numbers, dry matter content, and sensory characteristics on boiled sweetpotato. Since varieties were previously tested intensively by CIP under diverse conditions, the focus of the current study was to determine their acceptability by farmers. Across-environment ANOVA showed highly significant differences (P &lt; 0.001) for environments, genotypes, and genotype × environment interaction (GE) for all traits studied. Variety Cecelia outperformed the rest in three environments. Cecelia, Erica, Ininda, and Lourdes were found to be the top four most stable and high-yielding varieties. Genetic gains of the top four varieties over the preferred local check Mai Chenje ranged from 135 to 184%, and across-environment broad-sense heritability was 60% for tuber yield. Furthermore, farmers accepted the dry matter content (which was &gt;25%) and taste of all the introduced OFSP varieties. Since there was a high acceptability by farmers, introductions from CIP could help improve human nutrition. Despite the appropriate design, the error variance component was the highest for all traits, and proper field plot techniques were proposed in future breeding and testing activities.


Sign in / Sign up

Export Citation Format

Share Document