scholarly journals Nitrogen and Sulfur Fertilization in Kale and Swede for Grazing

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 619
Author(s):  
Osvaldo Teuber ◽  
Dulan Samarappuli ◽  
Marisol Berti

Species in the Brassicaceae family, hence forth brassicas, such as forage kale [Brassica. oleracea L. convar acephala (DC)], swede (B. napus L. var. napobrassica), turnip [Brassica rapa L. var. rapa (L.) Thell], and hybrids (B. rapa L. × B. pekinensis L. or B. rapa L. × B. oleracea L.), have become an important source of forage for grazing worldwide. One of the limitations of forage brassicas is the relatively higher water content and low forage yield in rain-fed environments. The objective of this study was to determine swede and kale forage yield and nutritive value response to various nitrogen (N) and sulfur (S) fertilization rates. The study was conducted at two experimental field sites in North Dakota in 2012 and 2014. Kale cv. Maris Kestrel and swede cv. Major Plus and five N rates (0, 50, 100, 150, and 200 kg N ha−1) and two rates of S (0 and 40 kg S ha−1) were evaluated. Swede total forage yield was greater than kale across all nitrogen and sulfur rates. Compared with no N fertilization, N fertilization increased total leaf and root/stems yield and nitrogen accumulation in leaves, roots, and stems. Sulfur did not affect forage yield. Forage nutritive value was greater in swede than kale due to a higher proportion of edible root compared with kale’s higher proportion of fibrous stems. Nitrogen and sulfur interacted with some forage nutritive components. This study results suggest that growers will benefit from greater forage yield in kale and swede if they fertilize with N up to 200 kg N ha−1. Forage yield and nutritive value of swede and kale in the northern Great Plains are novel results, since these crops are not grown for forage and represent an interesting and valuable new alternative for beef cattle growers.

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2184
Author(s):  
Samuel Peprah ◽  
Enkhjargal Darambazar ◽  
Bill Biligetu ◽  
Alan D. Iwaasa ◽  
Kathy Larson ◽  
...  

The potential for novel forage mixtures to address reduced herbage for late season grazing was investigated. Forage legumes, sainfoin (Onobrychis viciifolia Scop.) (SF) cvs. AC Mountainview, Shoshone, and Nova (MountainSF, ShoshoneSF, and NovaSF), cicer milkvetch (Astragalus cicer L.) cv. AC Veldt (CMV), Canadian milkvetch (Astragalus canadensis L.) cv. Great Plains (CaMV), and alfalfa (Medicago sativa L.) cv. AC Yellowhead (ALF) were evaluated in binary mixtures with meadow bromegrass (Bromus riparius Rehm.) cv. Admiral (MBG), hybrid bromegrass (B. riparius × B. inermis Leyss.) cv. AC Success (HBG) and Russian wildrye [Psathyrostachys junceus (Fisch.) Nevski.] cv. Tom (RWR) for yield, botanical composition, and nutritive value on July and September harvest dates at Saskatoon and Swift Current, Saskatchewan, Canada from 2016 to 2018. Hybrid bromegrass-legume mixture produced 16–38% greater forage compared to RWR-legume (7.5 vs. 5.6 Mg ha−1 in July and 6.1 vs. 5.1 Mg ha−1 in September at Saskatoon, and 3.2 vs. 2.0 Mg ha−1 in July at Swift Current). MountainSF and ALF had the greatest legume contribution to total yield at July harvest at Swift Current (67.7 ± 3.2%) and Saskatoon (62.1 ± 2.1%), respectively, while CaMV had lowest composition at Swift Current (20.2 ± 2.5%) and Saskatoon (12.6 ± 3.5%). The CMV and ALF-grass mixtures at Saskatoon and legume-RWR mixtures at both sites in July had greatest CP content. The July harvest had greatest yield, legume content and nutritive value compared to the September harvest at both sites. Study results suggest if yield is the objective, then either ALF or CMV with HBG may be considered. If nutritive value is the goal, any legume with RWR is an option. Finally, ALF or CMV in mixture with either HBG or RWR could be summer or fall stockpile forage in the Northern Great Plains of western Canada.


2018 ◽  
Vol 98 (6) ◽  
pp. 1234-1244
Author(s):  
Nityananda Khanal ◽  
Michael P. Schellenberg ◽  
Bill Biligetu

White prairie clover [Dalea candida (Michx.) Willd.] is native to the dry prairies and hillsides of the Northern Great Plains. A study was initiated in 2012 with six white prairie clover populations collected from the Canadian Prairies. Plant growth characteristics, forage biomass, seed yield, and forage nutritive values were evaluated using a randomized complete block design in a field near Swift Current, SK. Three populations from Argyle, Carlowrie, and Big Grass Marsh (NCP588) in Manitoba displayed erect-type growth while those from Douglas Provincial Park and Stewart Valley in Saskatchewan and Writing on Stone Provincial Park in Alberta exhibited prostrate growth. The populations did not differ for mean biomass yield (79–104 g plant−1, p = 0.54) and mean seed yield (6.6–9.1 g plant−1, p = 0.69); however, they differed for bloom stage nutritional parameters such as acid detergent fibre (25%–30%, p = 0.04), neutral detergent fibre (34%–41%, p < 0.01), crude proteins (15%–18%, p < 0.01), phosphorus (0.24%–0.29%, p = 0.02), and iron content (144–360 ppm, p = 0.01). To our knowledge, this is the first report of comparative phenotypic, nutritional, and propagation study of native white prairie clover populations of Canada. The constraints and opportunities for successful domestication of white prairie clover as a forage crop are discussed.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 21-22
Author(s):  
Taylor J Hendricks ◽  
Jennifer J Tucker ◽  
Dennis W Hancock ◽  
Lawton Stewart ◽  
Jacob R Segers

Abstract Interseeding a legume, such as alfalfa (Medicago sativa), into bermudagrass (Cynodon dactylon) for baleage production can improve forage quality, reduce supplementation needs, and minimize production losses. The objective of this research was to compare the nutritive value and yield of bermudagrass with and without interseeded alfalfa when produced as baleage. This study was conducted at the University of Georgia Coastal Plain Experiment Station in Tifton, GA, on an established field of ‘Tifton 85’ (T85) bermudagrass. Ten 0.2-ha plots were randomly assigned to either T85+N or T85 interseeded with ‘Bulldog 805’ alfalfa (T85+Alf). T85+N received N fertilization (84 kg N/ ha) four times each growing season. Plots were harvested at early bloom stage every 28 to 35 days from 2016 to 2018, baled at 40–60% moisture, and individually wrapped. At each harvest, plots were evaluated for botanical composition and forage yield, and bales were sampled prior to wrapping for nutritive value analysis. Plots were also evaluated for botanical composition using the point-transect method 10 days post-harvest. Data were analyzed using mixed models and least significant differences at α = 0.05. Although seasonal yields were greater in the T85+N during year 1, alfalfa-bermudagrass plots produced at least one additional harvest each season of the study, and on average 8 cuttings per season each year following establishment. Ultimately this contributed to greater (P < 0.0001) cumulative yield in the alfalfa-bermudagrass treatment (34,783 vs. 25,608 kg/ha, respectively). Analyses of nutritive value through near-infrared spectroscopy (NIR) show that CP and in-vitro true digestibility (IVTD) were greater (P = 0.005 and P = 0.034, respectively) in the alfalfa-bermudagrass treatment than the bermudagrass-only treatment (14.0 vs 11.4% CP and 66.7 vs. 60.2% IVTD, respectively). Improvements in seasonal yield and nutritive value makes bermudagrass interseeded with alfalfa a viable option for baleage producers in the Southeast.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Olga S. Walsh ◽  
Kefyalew Girma

Experiments were conducted in Montana to evaluate Environmentally Smart Nitrogen (ESN) as a nitrogen (N) source in wheat. Plots were arranged in a split-plot design with ESN, urea, and a 50%-50% urea-ESN blend at low, medium, and high at-seeding N rates in the subplot, with four replications. Measurements included grain yield (GY), protein (GP), and N uptake (GNU). A partial budget economic analysis was performed to assess the net benefits of the three sources. Average GY varied from 1816 to 5583 kg ha−1and grain protein (GP) content ranged from 9.1 to 17.3% among site-years. Urea, ESN, and the blend resulted in higher GYs at 3, 2, and 2 site-years out of 8 evaluated site-years, respectively. Topdressing N improved GY for all sources. No trend in GP associated with N source was observed. With GP-adjusted revenue, farmer would not recover investment costs from ESN or blend compared with urea. With ESN costing consistently more than urea per unit of N, we recommend urea as N source for spring wheat in Northern Great Plains.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 36-36
Author(s):  
Taylor J Hendricks ◽  
Jennifer J Tucker ◽  
Dennis W Hancock ◽  
Lawton Stewart ◽  
Jacob R Segers

Abstract Interseeding a legume, such as alfalfa (Medicago sativa), into bermudagrass (Cynodon dactylon) for baleage production can improve forage quality, reduce supplementation needs, and minimize production losses. The objective of this research was to compare the nutritive value and yield of bermudagrass with and without interseeded alfalfa when produced as baleage. This study was conducted at the University of Georgia Coastal Plain Experiment Station in Tifton, GA, on an established field of ‘Tifton 85’ (T85) bermudagrass. Ten 0.2-ha plots were randomly assigned to either T85+N or T85 interseeded with ‘Bulldog 805’ alfalfa (T85+Alf). T85+N received N fertilization (84 kg N/ ha) four times each growing season. Plots were harvested at early bloom stage every 28 to 35 days from 2016 to 2018, baled at 40–60% moisture, and individually wrapped. At each harvest, plots were evaluated for botanical composition and forage yield, and bales were sampled prior to wrapping for nutritive value analysis. Plots were also evaluated for botanical composition using the point-transect method 10 days post-harvest. Data were analyzed using mixed models and least significant differences at α = 0.05. Although seasonal yields were greater in the T85+N during year 1, alfalfa-bermudagrass plots produced at least one additional harvest each season of the study, and on average 8 cuttings per season each year following establishment. Ultimately this contributed to greater (P < 0.0001) cumulative yield in the alfalfa-bermudagrass treatment (34,783 vs. 25,608 kg/ha, respectively). Analyses of nutritive value through near-infrared spectroscopy (NIR) show that CP and in-vitro true digestibility (IVTD) were greater (P = 0.005 and P = 0.034, respectively) in the alfalfa-bermudagrass treatment than the bermudagrass-only treatment (14.0 vs 11.4% CP and 66.7 vs. 60.2% IVTD, respectively). Improvements in seasonal yield and nutritive value makes bermudagrass interseeded with alfalfa a viable option for baleage producers in the Southeast.


1991 ◽  
Vol 71 (3) ◽  
pp. 709-715 ◽  
Author(s):  
A. Boe ◽  
E. K. Twidwell ◽  
K. D. Rephart

Cowpea [Vigna unguiculata (L.) Walp.] and mungbean [Vigna radiata (L.) Wilczek] are summer-annual legumes which have potential as forages in the northern Great Plains region of the USA during late summer when cool-season grass pastures decline in productivity. The objective of this study was to evaluate forage yield and growth response of these species when grown under different row spacings and planting rates. Victor cowpea and Berken mungbean were planted at 500 000 pure live seeds (PLS) ha−1 in row spacings of 25, 50, and 75 cm at two South Dakota locations in 1987. In 1988 the two species were planted at rates of either 250 000 or 500 000 PLS ha−1 in the same row spacings at three locations. Cowpea produced higher forage yields than mungbean at all locations in both years. Yields of both species decreased with increased row spacing. Species did not differ in plant weight, but plant number per unit of harvested area was greater for cowpea than mungbean. Forage yield was not significantly affected by planting rate at any location in 1988; however, plant weight, leaflets plant−1, and leaf area plant−1 were significantly greater for the low rate, showing that forage yield remained relatively constant across wide variations in plant population. Results indicate that both cowpea and mungbean have potential as summer annual forage crops. However, the consistently higher yield performance of the cowpea cultivar suggests that it was better adapted than the mungbean cultivar to the northern Great Plains region and consequently should be a better forage crop. Key words: Vigna unguiculata (L.) Walp., Vigna radiata (L.) Wilczek, yield, plant density, cowpea, mungbean


2021 ◽  
Author(s):  
Thandiwe Nleya ◽  
Dwarika Bhattarai ◽  
Phillip Alberti

Camelina (Camelina sativa L. Crantz,) a new oilseed crop in the Brassicaceae family has favorable agronomic traits and multiple food and industrial uses. Appropriate production practices for optimal camelina yield in temperate climates of North America are lacking. This study investigated the response of camelina seed yield and quality, and agronomic traits to applied N (5 levels, 0, 28, 56, 84, 140 kg ha−1) and four seeding rates (4.5, 9, 13, 17.5 kg ha−1). Separate experiments were conducted at four environments (site-years) for N and three environments for seeding rate in South Dakota. In three of the four environments, the highest N rate increased seed yield by 30 to 60% compared to the control. The increase in seed yield with increasing N rate was linear in a high yielding environment and quadratic in a low yielding environment. Increasing seeding rate increased plant stands but had inconsistent impacts on seed yield depending on location and year. Seed oil concentration ranged from 149 to 350 g kg−1, was inversely related to N rate but was not influenced by seeding rate.


2020 ◽  
Vol 30 (2) ◽  
pp. 204-211
Author(s):  
Laura Jalpa ◽  
Rao S. Mylavarapu ◽  
George J. Hochmuth ◽  
Alan L. Wright ◽  
Edzard van Santen

Use efficiency of applied nitrogen (N) is estimated typically to be <50% in most crops. In sandy soils and warmer climates particularly, leaching and volatilization may be primary pathways for environmental loss of applied N. To determine the effect of N fertilization rate on the N use efficiency (NUE) and apparent recovery of N fertilizer (APR), a replicated field study with ‘BHN 602’ tomato (Solanum lycopersicum) grown in sandy soils under a fertigated plastic-mulched bed system was conducted using ammonium nitrate as the N source at four different rates (0, 150, 200, and 250 lb/acre). Spring tomato was followed by fall tomato in the same field, a typical cropping sequence in north Florida. Fertigation of N fertilizer was applied weekly in 13 equal doses for both seasons. The highest NUE was 12.05% (spring) and 32.38% (fall), and the highest APR was 6.11% (spring) for the lowest rate of N applied (150 lb/acre). In the fall, APR was unaffected by fertilizer N rates and ranged from 12.88% to 19.39%. Nitrogen accumulation in tomato plants were similar among the three N fertilizer rates applied (150, 200, and 250 lb/acre), though compared with no N fertilizer application, significant increases occurred. Whole plant N accumulation, NUE, and APR declined or remained similar when N rates increased above 150 lb/acre. Additionally, a regression analysis and derivative of the quadratic fresh yield data showed that yields were maximized at 162 and 233 lb/acre N in the spring and fall seasons, respectively.


2001 ◽  
Vol 81 (4) ◽  
pp. 577-585 ◽  
Author(s):  
G. Bélanger ◽  
R. Michaud ◽  
P. G. Jefferson ◽  
G. F. Tremblay ◽  
A. Brégard

Timothy (Phleum pratense L.) is a widely grown fo rage grass species in cool and humid regions of the world including northeastern and northwestern North America, Nordic countries, Russia, and Japan. The nutritive value of timothy decreases with time, phenological development, and increasing forage yield. This review paper summarizes methods of controlling or improving the nutritive value of timothy through management practices and genetic selection, while keeping in mind the importance of forage yield. Consequently, the nutritive value of timothy is considered in relation to the accumulation of forage yield. The ecophysiological basis for the decrease in nutritive value with increasing forage yield during a growth cycle is presented with the assumption that the forage is made of two components: metabolic and structural. The decrease in the proportion of the metabolic component with increasing forage yield reduces the nutritive value of timothy. The nutritive value is also affected by the N concentration of the metabolic component, and by the digestibility of the structural component. Harvest dates, growing seasons, N fertilization, and cultivars have an indirect effect on the nutritive value of timothy through increased forage yield and the change in the proportion of the metabolic and structural components, but they also have a direct effect on each component. The results presented demonstrate the possibility of dissociating yield and nutritive value by plant breeding and, therefore, to improve the nutritive value of timothy while maintaining forage yield. Key words: Yield, cultivar, nitrogen, digestibility


Sign in / Sign up

Export Citation Format

Share Document