scholarly journals Management of Residues from Fruit Tree Pruning: A Trade-Off between Soil Quality and Energy Use

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 236
Author(s):  
Angela Libutti ◽  
Anna Rita Bernadette Cammerino ◽  
Massimo Monteleone

In the EU, bioenergy is by far the most significant renewable energy source and more than two thirds of biomass utilized for energy conversion consists of forestry and agricultural residues, such as fruit tree pruning. Although still underutilized, biomass from pruning is a relevant energy feedstock that does not generate additional demand for land, nor negative impact on the environment and biodiversity. On the other hand, previously shredded pruning left in the field may sustain agricultural processes and help provide beneficial ecological services. In the latter case, the most relevant result is the increase in soil organic carbon, an essential factor for improving soil quality and promoting climate regulation. As a result, a “dilemma” arises for farmers over two conflicting pruning management options: “pruning to energy” vs. “pruning to soil”, respectively. The present study, performed in the frame of the Horizon 2020 project “uP_running”, is offering a straightforward evaluation tool to assess weather biomass resulting from fruit tree pruning could be removed from the field and used as energy feedstock without compromising both soil quality and the provision of important ecosystem services.

2020 ◽  
Vol 31 (4) ◽  
pp. 152-159
Author(s):  
Per Kudsk ◽  
Mette Sønderskov ◽  
Ludovic Bonin ◽  
Jose L. Gonzalez-Andujar ◽  
Jens Erik Jensen ◽  
...  

IWMPRAISE is the first EU Framework Research project focusing solely on weed management. Thirty-eight partners in eight European countries are working together on developing integrated weed management strategies for agricultural and horticultural crops. Per Kudsk, the coordinator of IWMPRAISE, and the work package leaders present the project, the on-going studies and some of the early outputs. Weeds are ubiquitous and cause substantial yield losses across all arable and horticultural systems. Currently, the reliance on herbicides is very high in conventional farming systems and in many European countries herbicides are the single most used group of pesticides (https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=aei_fm_salpest09&lang=en). There are several reasons for the high herbicide use, such as lack of threshold-based spraying decisions and lack of any single sufficiently effective, readily applicable, cost-effective non-chemical method. Nonetheless, two factors are driving an immediate need to change weed control practices in conventional farming: the rapidly increasing problem of herbicide resistance, exacerbated by the fact that no new herbicide sites of action have been marketed since the early 1980s, and the expectation that many of the currently used herbicides will be withdrawn from the EU market as they do not meet the human and environmental toxicity criteria set out in EU Regulation 1109/2009. In addition to these two immediate concerns, it has also been shown that herbicides have partly been responsible for recent declines in farmland biodiversity and hence a negative impact on the associated ecosystem services. The over-reliance on chemical control of weeds has highlighted the need for Integrated Weed Management (IWM) strategies that combine non-chemical management options that reduce either weed density or competition with the crop.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


2020 ◽  
Vol 12 (3) ◽  
pp. 1154
Author(s):  
Ibolya Czibere ◽  
Imre Kovách ◽  
Gergely Boldizsár Megyesi

In our paper we aim at analysing the social factors influencing energy use and energy efficiency in four different European countries, using the data from the PENNY research (Psychological social and financial barriers to energy efficiency—Horizon 2020). As a part of the project, a survey was conducted in four European countries (Italy, The Netherlands, Switzerland and Hungary) to compare environmental self-identity, values and attitudes toward the energy use of European citizens. Previous research has examined the effect of a number of factors that influence individuals’ energy efficiency, and attitudes to energy use. The novelty of our paper that presents four attitudes regarding energy use and environmental consciousness and compares them across four different regions of Europe. It analyses the differences between the four attitudes among the examined countries and tries to understand the factors explaining the differences using linear regression models of the most important socio-demographic variables. Finally, we present a typology of energy use attitudes: four groups, the members of which are basically characterised by essentially different attitudes regarding energy use. A better understanding of the diversity of energy use may assist in making more accurate policy decisions.


Author(s):  
Valentin Crismaru ◽  

This paper present data regarding natural impact and anthropic over soils in Development Region Central. Due to the intensive exploitation of the land and natural resources the ecological situation worsened considerably as result negative impact over the soil of Region Central. The natural impact and anthropic of agriculture and pressure of various factors, also led to decrease of soil quality and growth the area of soils eroded. Also was a big influence to crops productivity.


Author(s):  
Ana Tisov ◽  
Dan Podjed ◽  
Simona D’Oca ◽  
Jure Vetršek ◽  
Eric Willems ◽  
...  

This paper attempts to alter a prevailing assumption that buildings use energy to an understanding that in fact, people use energy. Therefore, to successfully accelerate the transition to a low-carbon society and economy more emphasis should be on motivating people and increasing their awareness by making them energy conscious building users and therefore active players in the energy transition process. In this context, this paper provides insights from the Horizon 2020 MOBISTYLE project. It demonstrates research and development approaches, highlights the main project objectives, and presents findings of an ethnographic (qualitative) study of users’ habits, practices, and needs. The aim of the project is to motivate behavioural change by raising consumer awareness through the provision of attractive personalized information on user’s energy use, indoor environment and health, all enabled by an integrated information and communication technology (ICT) service. In this context, the anthropological people-centred approach is integrated into the MOBISTYLE approach putting users at the centre of the ICT tools development process. The main quantitative objective of the project is a reduction of energy use for at least 16 % prompted by the provision of combined information and feedback systems on energy, indoor environmental quality (IEQ) and health. The most relevant motivational factors and key performance indicators (KPIs) for encouraging a more energy conscious and healthy lifestyle were defined by means of a people-centred approach, adopting anthropological inquiries in different settings. Information about users’ lifestyles and their needs was collected in focus groups with potential users in five case studies, located in different European Union (EU) countries. Behaviour change is achieved through awareness campaigns, which encourage users to be pro-active about their energy consumption and to simultaneously improve health and well-being.


Author(s):  
H. Haruna

Land use changes from forest into cultivated ecosystems result in negative impact on soil structure and quality. The purpose of this study was to determine effect of land use on soil quality in Afaka forest northern guinea savannah of Nigeria. Land use systems, including natural forest and cultivated land were identified. Eighteen (18) composite disturbed and undisturbed samples were collected from depth of 0-5 and 5-10 cm for analysis of pertinent soil properties in the laboratory using grid procedure. Most physical and chemical properties show relative variations in response to land use types and geomorphic positions. Results  indicate  that the soils had  high degree of weathering potentials, low  to moderate  bulk density at 0-5cm depth values between 1.42 to 1.49 Mg m-3 in  forest and  cultivated land, bulk density of  1.34 and 1.46 1.Mg m-3at 5 -1ocm depth   for forest and  cultivated land respectively. The soil water at 0-5cm depth is from 4.20 to 2.63 cm3/cm3, while at 5-10 cm depth these values vary from 4.32 to 2.13 cm3/cm3 under forest and cultivation land use. The pH (H2O) is 6.9 to 7.16 with low electrical conductivity of 0.13 dS/m(forest) and 0.12 dS/m (cultivation). The CEC of soils is recorded as 8.60 cmol kg-1 (forest) to 8.54 cmol kg-1 (cultivated)whereas  total nitrogen content of 1.21 g kg-1 and 1.11 g kg-1 and available phosphorus of 8.78 mg kg-1 (cultivated) and 5.47 mg kg-1 (forest).. Results indicate that soil fertility parameters were moderate to low for cultivated land and at all slope positions, suggesting that soil fertility management is required in order to make agriculture sustainable on Afaka area.


2013 ◽  
Vol 53 ◽  
pp. 350-353 ◽  
Author(s):  
Andrea Acampora ◽  
Sara Croce ◽  
Alberto Assirelli ◽  
Angelo Del Giudice ◽  
Raffaele Spinelli ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 613-633 ◽  
Author(s):  
Sylvia Breukers ◽  
Tracey Crosbie ◽  
Luc van Summeren

If the designers of technologies intended to reduce or shift energy consumption are not sensitive to how people live and work in buildings, a gap occurs between the expected and actual performance of those technologies. This paper explores this problem using the concepts of ‘design logic’ (designers’ ideas, values, intentions and user representations) and the ‘user logic’ (related in this case to how building occupants currently live and work in a building). The research presented unpacks the ‘design logic’ embedded in DR approaches planned for implementation at four blocks of buildings in a Horizon 2020 funded project, called “Demand Response in Blocks of Buildings” (DR-BoB). It discusses how the ‘user logic’ may differ from the ‘design logic’ and the potential impact of this on the performance of the technologies being implemented to reduce or shift energy consumption. The data analysed includes technical working documents describing the implementation scenarios of DR at four pilot sites, interviews and workshops conducted with the project team and building occupants during the first phases of the project. The analysis presented identifies how expectations about building occupants and their behaviours are built into the DR scenarios (to be tested during the project demonstrations). Initial findings suggest that building occupants’ energy use practices and routines may be different from those expectations. The paper illustrates how the concepts of ‘design logic’ and ‘user logic’ can be used to identify mismatches before technologies are implemented. The paper concludes with recommendations for improving the design and implementation of DR.


Sign in / Sign up

Export Citation Format

Share Document