scholarly journals Sentinel-2 Images and Machine Learning as Tool for Monitoring of the Common Agricultural Policy: Calasparra Rice as a Case Study

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 621
Author(s):  
Francisco Javier López-Andreu ◽  
Manuel Erena ◽  
Jose Antonio Dominguez-Gómez ◽  
Juan Antonio López-Morales

The European Commission introduces the Control by Monitoring through new technologies to manage Common Agricultural Policy funds through the Regulation 2018/746. The advances in remote sensing have been considered one of these new technologies, mainly since the European Space Agency designed the Copernicus Programme. The Sentinel-1 (radar range) and Sentinel-2 (optical range) satellites have been designed for monitoring agricultural problems based on the characteristics they provide. The data provided by the Sentinel 2 missions, together with the emergence of different scientific disciplines in artificial intelligence —especially machine learning— offer the perfect basis for identifying and classifying any crop and its phenological state. Our research is based on developing and evaluating a pixel-based supervised classification scheme to produce accurate rice crop mapping in a smallholder agricultural zone in Calasparra, Murcia, Spain. Several models are considered to obtain the most suitable model for each element of the time series used; pixel-based classification is performed and finished with a statistical treatment. The highly accurate results obtained, especially across the most significant vegetative development dates, indicate the benefits of using Sentinel-2 data combined with Machine Learning techniques to identify rice crops. It should be noted that it was possible to locate rice crop areas with an overall accuracy of 94% and standard deviation of 1%, which could be increased to 96% (±1%) if we focus on the months of the crop’s highest development state. Thanks to the proposed methodology, the on-site inspections carried out, 5% of the files, have been replaced by remote sensing evaluations of 100% of the analyzed season files. Besides, by adjusting the model input data, it is possible to detect unproductive or abandoned plots.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Filippo Sarvia ◽  
Elena Xausa ◽  
Samuele De Petris ◽  
Gianluca Cantamessa ◽  
Enrico Borgogno-Mondino

Farmers that intend to access Common Agricultural Policy (CAP) contributions must submit an application to the territorially competent Paying Agencies (PA). Agencies are called to verify consistency of CAP contributions requirements through ground campaigns. Recently, EU regulation (N. 746/2018) proposed an alternative methodology to control CAP applications based on Earth Observation data. Accordingly, this work was aimed at designing and implementing a prototype of service based on Copernicus Sentinel-2 (S2) data for the classification of soybean, corn, wheat, rice, and meadow crops. The approach relies on the classification of S2 NDVI time-series (TS) by “user-friendly” supervised classification algorithms: Minimum Distance (MD) and Random Forest (RF). The study area was located in the Vercelli province (NW Italy), which represents a strategic agricultural area in the Piemonte region. Crop classes separability proved to be a key factor during the classification process. Confusion matrices were generated with respect to ground checks (GCs); they showed a high Overall Accuracy (>80%) for both MD and RF approaches. With respect to MD and RF, a new raster layer was generated (hereinafter called Controls Map layer), mapping four levels of classification occurrences, useful for administrative procedures required by PA. The Control Map layer highlighted that only the eight percent of CAP 2019 applications appeared to be critical in terms of consistency between farmers’ declarations and classification results. Only for these ones, a GC was warmly suggested, while the 12% must be desirable and the 80% was not required. This information alone suggested that the proposed methodology is able to optimize GCs, making possible to focus ground checks on a limited number of fields, thus determining an economic saving for PA and/or a more effective strategy of controls.


2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


2020 ◽  
Vol 12 (10) ◽  
pp. 1620 ◽  
Author(s):  
Weichun Zhang ◽  
Hongbin Liu ◽  
Wei Wu ◽  
Linqing Zhan ◽  
Jing Wei

Rice is an important agricultural crop in the Southwest Hilly Area, China, but there has been a lack of efficient and accurate monitoring methods in the region. Recently, convolutional neural networks (CNNs) have obtained considerable achievements in the remote sensing community. However, it has not been widely used in mapping a rice paddy, and most studies lack the comparison of classification effectiveness and efficiency between CNNs and other classic machine learning models and their transferability. This study aims to develop various machine learning classification models with remote sensing data for comparing the local accuracy of classifiers and evaluating the transferability of pretrained classifiers. Therefore, two types of experiments were designed: local classification experiments and model transferability experiments. These experiments were conducted using cloud-free Sentinel-2 multi-temporal data in Banan District and Zhongxian County, typical hilly areas of Southwestern China. A pure pixel extraction algorithm was designed based on land-use vector data and a Google Earth Online image. Four convolutional neural network (CNN) algorithms (one-dimensional (Conv-1D), two-dimensional (Conv-2D) and three-dimensional (Conv-3D_1 and Conv-3D_2) convolutional neural networks) were developed and compared with four widely used classifiers (random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM) and multilayer perceptron (MLP)). Recall, precision, overall accuracy (OA) and F1 score were applied to evaluate classification accuracy. The results showed that Conv-2D performed best in local classification experiments with OA of 93.14% and F1 score of 0.8552 in Banan District, OA of 92.53% and F1 score of 0.8399 in Zhongxian County. CNN-based models except Conv-1D provided more desirable performance than non-CNN classifiers. Besides, among the non-CNN classifiers, XGBoost received the best result with OA of 89.73% and F1 score of 0.7742 in Banan District, SVM received the best result with OA of 88.57% and F1 score of 0.7538 in Zhongxian County. In model transferability experiments, almost all CNN classifiers had low transferability. RF and XGBoost models have achieved acceptable F1 scores for transfer (RF = 0.6673 and 0.6469, XGBoost = 0.7171 and 0.6709, respectively).


Author(s):  
Domenico Antonio Giuseppe Dell'Aglio ◽  
Carmine Gambardella ◽  
Massimiliano Gargiulo ◽  
Antonio Iodice ◽  
Rosaria Parente ◽  
...  

Forest fires are part of a set of natural disasters that have always affected regions of the world typically characterized by a tropical climate with long periods of drought. However, due to climate change in recent years, other regions of our planet have also been affected by this phenomenon, never seen before. One of them is certainly the Italian peninsula, and especially the regions of southern Italy. For this reason, the scientific community, as well as remote sensing one, is highly concerned in developing reliable techniques to provide useful support to the competent authorities. In particular, three specific tasks have been carried out in this work: (i) fire risk prevention, (ii) active fire detection, and (iii) post-fire area assessment. To accomplish these analyses, the capability of a set of spectral indices, derived from spaceborne remote sensing (RS) data, is assessed to monitor the forest fires. The spectral indices are obtained from Sentinel-2 multispectral images of the European Space Agency (ESA), which are free of charge and openly accessible. Moreover, the twin Sentinel-2 sensors allow to overcome some restrictions on time delivery and observation repeat time. The performance of the proposed analyses were assessed experimentally to monitor the forest fires occurred in two specific study areas during the summer of 2017: the volcano Vesuvius, near Naples, and the Lattari mountains, near Sorrento (both in Campania, Italy).


2021 ◽  
Author(s):  
Manuel Campos-Taberner ◽  
Francisco Javier García-Haro ◽  
Beatriz Martínez ◽  
Sergio Sánchez-Ruiz ◽  
María Amparo Gilabert

2020 ◽  
Author(s):  
Thanh Noi Phan ◽  
Yun Jäschke ◽  
Oyundari Chuluunkhuyag ◽  
Munkhzul Oyunbileg ◽  
Karsten Wesche ◽  
...  

<p>In this study, we investigate the performance of machine learning classification approaches and different remotely sensed data sources for identifying and mapping three types of grassland communities found in the Mongolian Steppe region (Artemisia, Caragana and grass dominated steppes). The Mongolian steppe is intensively used as pasture and provides the economic basis for approximately 1 million herders. The grassland types differ in their forage values, which is why a spatially-explicit estimation of their occurrence is of high importance. We compared different sensors, classifiers, and training-sample strategies to identify the most effective approaches for mapping these communities. Ten datasets were used: Landsat 8 OLI (30 m), pan-sharpened Landsat 8 (15 m), Landsat 8 Surface Reflectance (30 m), Sentinel 2 (10 m), Sentinel 2 (20 m), Worldview 3 (0.5 m and 1.2 m), integrated Landsat 8 and Sentinel 2 (30 m), temporal Landsat 8, and temporal Sentinel 2. The two foremost classifiers at producing high accuracy of land cover classification, SVM and RF, were applied with the same training datasets. The training samples were collected in a manner so that they could be used for different spatial resolutions (i.e., ranging from 0.5 to 30 m) with the least effect from mixed training samples and spatial autocorrelation. The results of this study indicate that remote sensing is a viable method for the identification of different grassland communities in the Mongolian Steppe region.</p><p> </p>


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2125 ◽  
Author(s):  
Lucas Silveira Kupssinskü ◽  
Tainá Thomassim Guimarães ◽  
Eniuce Menezes de Souza ◽  
Daniel C. Zanotta ◽  
Mauricio Roberto Veronez ◽  
...  

Total Suspended Solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, this paper presents a methodology to estimate this information through remote sensing and Machine Learning (ML) techniques. TSS and chlorophyll-a are optically active components, therefore enabling measurement by remote sensing. Two study cases in distinct water bodies are performed, and those cases use different spatial resolution data from Sentinel-2 spectral images and unmanned aerial vehicles together with laboratory analysis data. In consonance with the methodology, supervised ML algorithms are trained to predict the concentration of TSS and chlorophyll-a. The predictions are evaluated separately in both study areas, where both TSS and chlorophyll-a models achieved R-squared values above 0.8.


2020 ◽  
Vol 8 (S1) ◽  
pp. S26-S42 ◽  
Author(s):  
Roberto Interdonato ◽  
Raffaele Gaetano ◽  
Danny Lo Seen ◽  
Mathieu Roche ◽  
Giuseppe Scarpa

AbstractNowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is the Sentinel-2 Earth Observation mission, developed by the European Space Agency as part of the Copernicus Programme, which supplies images from the whole planet at high spatial resolution (up to 10 m) with unprecedented revisit time (every 5 days at the equator). In this data-rich scenario, the remote sensing community is showing a growing interest toward modern supervised machine learning techniques (e.g., deep learning) to perform information extraction, often underestimating the need for reference data that this framework implies. Conversely, few attention is being devoted to the use of network analysis techniques, which can provide a set of powerful tools for unsupervised information discovery, subject to the definition of a suitable strategy to build a network-like representation of image data. The aim of this work is to provide clues on how Satellite Image Time Series can be profitably represented using complex network models, by proposing a methodology to build a multilayer network from such data. This is the first work to explore the possibility to exploit this model in the remote sensing domain. An example of community detection over the provided network in a real-case scenario for the mapping of complex land use systems is also presented, to assess the potential of this approach.


Sign in / Sign up

Export Citation Format

Share Document