scholarly journals Strategies for Coffee Leaf Rust Management in Organic Crop Systems

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1865
Author(s):  
Mário L. V. de Resende ◽  
Edson A. Pozza ◽  
Tharyn Reichel ◽  
Deila M. S. Botelho

Coffee is a crop of great economic importance in many countries. The organic coffee crop stands out from other production systems by aiming to eliminate the use of synthetic fertilizers and pesticides. One of the most important limitations in the organic system is the management of diseases, especially coffee rust, which is considered the main disease of this crop. Coffee rust causes a production slump of up to 50%, significantly affecting the profitability of coffee growers. This work aims to review the integrated rust management in organic coffee crop in different producing countries. Regarding the disease management strategies, this review addresses the use of rust-resistant cultivars, cultural management, biological control, use of plant extracts, and chemical rust control by cupric fungicides. Considering the importance of the organic system, the increase in world coffee consumption, and the potential market for this kind of coffee, this review may help researchers and producers looking for alternative strategies to control rust in an organic coffee cultivation system.

2021 ◽  
Vol 3 ◽  
Author(s):  
Katie M. Patterson ◽  
Lauren M. Schwartz-Lazaro ◽  
Gabrielle LaBiche ◽  
Daniel O. Stephenson

The soil seedbank allows for long-term persistence of weed species in agricultural fields. Some weed species can persist in the soil seedbank for extended periods. Restricting inputs into the weed seedbank has a large impact on future population density and influences management practices of these weeds in soybean production systems. Harvest weed seed control (HWSC) tactics incorporate mechanical and cultural management strategies to target weed seeds present at harvest. A 3-year trial was initiated to determine if continual use of the HWSC method, narrow windrow burning, selects for earlier seed set and shattering in Louisiana soybean. No shifts in weed populations or shattering time were observed. However, there was a significant reduction in weed density and the weed seed present in the soil seedbank when HWSC and robust herbicide programs were used in combination. Therefore, utilizing multiple effective weed management strategies is imperative in reducing the soil seedbank.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


2006 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
S. N. Rampersad

Tomato production in Trinidad has suffered considerable losses in yield and fruit quality due to infections of hitherto surmised etiology. In order to develop strategies for controlling viral diseases in tomato, the relative distribution and incidence of seven viruses that commonly infect tomato were determined. Of the 362 samples tested, Potato yellow mosaic Trinidad virus (PYMTV) was found in every farm except two and was present at relatively high incidence throughout the country. Tobacco mosaic virus (TMV) and Tobacco etch virus (TEV) were found in fewer farms and at lower incidences while the other viruses were absent. Single infections of either virus were more common than double infections and multiple infections were rare but present. The results indicated that PYMTV is the predominant and most important viral pathogen in tomato production systems in Trinidad; however, begomovirus disease management strategies will also have to accommodate controls Accepted for publication 10 January 2006. Published 9 March 2006.


2012 ◽  
Vol 52 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Beata Feledyn-Szewczyk

Abstract The research was conducted from 2008 to 2010, and compared the influence of different weed control methods used in spring wheat on the structure of the weed communities and the crop yield. The study was carried out at the Experimental Station of the Institute of Soil Science and Plant Cultivation - State Research Institute in Osiny as part of a long-term trial where these crop production systems had been compared since 1994. In the conventional and integrated systems, spring wheat was grown in a pure stand, whereas in the organic system, the wheat was grown with undersown clover and grasses. In the conventional system, herbicides were applied two times in a growing season, but in the integrated system - only once. The effectiveness of weed management was lower in the organic system than in other systems, but the dry matter of weeds did not exceed 60 g/m2. In the integrated system, the average dry matter of weeds in spring wheat was 4 times lower, and in the conventional system 10 times lower than in the organic system. Weed diversity was the largest in spring wheat cultivated in the organic system. In the conventional and integrated systems, compensation of some weed species was observed (Viola arvensis, Fallopia convolvulus, Equisetum arvense). The comparison of weed communities using Sorenson’s indices revealed more of a similarity between systems in terms of number of weed species than in the number of individuals. Such results imply that qualitative changes are slower than quantitative ones. The yield of grain was the biggest in the integrated system (5.5 t/ha of average). It was 35% higher than in the organic system, and 20% higher than in conventional ones.


2009 ◽  
Vol 24 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Olha Sydorovych ◽  
Charles W. Raczkowski ◽  
Ada Wossink ◽  
J. Paul Mueller ◽  
Nancy G. Creamer ◽  
...  

AbstractConventional agriculture often aims to achieve high returns without allowing for sustainable natural resource management. To prevent environmental degradation, agricultural systems must be assessed and environmental standards need to be developed. This study used a multi-factor approach to assess the potential environmental impact risk of six diverse systems: five production systems and a successional system or abandoned agronomic field. Assessment factors were soil quality status, amount of pesticide and fertilizer applied and tillage intensity. The assessment identified the best management practices (BMP)–conventional tillage system as a high-risk system mostly because of extensive tillage. The certified organic system was also extensively tilled and was characterized by P build-up in the soil, but performed well based on other assessment factors. Conversely, the BMP–no tillage and the crop–animal integrated system were characterized as low risk mainly because of reduced tillage. The paper discusses assessment strengths and weaknesses, ways to improve indicators used, and the need for additional indicators. We concluded that with further development the technique will become a resourceful tool to promote agricultural sustainability and environmental stewardship and assist policy-making processes.


2018 ◽  
Vol 37 (3) ◽  
pp. 210-218
Author(s):  
Cansu Demir ◽  
Ülkü Yetiş ◽  
Kahraman Ünlü

Thermal power plants are of great environmental importance in terms of the huge amounts of wastes that they produce. Although there are process-wise differences among these energy production systems, they all depend on the logic of burning out a fuel and obtaining thermal energy to rotate the turbines. Depending on the process modification and the type of fuel burned, the wastes produced in each step of the overall process may change. In this study, the most expected process and non-process wastes stemming from different power generation processes have been identified and given their European Waste Codes. Giving priority to the waste minimization options for the most problematic wastes from thermal power plants, waste management strategies have been defined. In addition, by using the data collected from site visits, from the literature and provided by the Turkish Republic Ministry of Environment and Urbanization, waste generation factor ranges expressed in terms of kilogram of waste per energy produced annually (kg/MWh) have been estimated. As a result, the highest generation was found to be in fly ash (24–63 for imported coal, 200–270 for native coal), bottom ash (1.3–6 for imported coal, 42–87 for native coal) and the desulfurization wastes (7.3–32) produced in coal combustion power plants. The estimated waste generation factors carry an important role in that they aid the authorities to monitor the production wastes declared by the industries.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
M. Iqbal Fauzi ◽  
Cahya Cahya ◽  
Sukmawati Saleh

ABSTRAK Realitas yang terjadi di masyarakat Gunung Puntang telah menjadi tradisi budidaya kopi organik, sebagai lumbung perekonomian rakyat yang berkembang menjadi daya tarik pariwisata berbasis kearifan lokal. Terkait dengan adanya tradisi sistem pertanian rakyat dalam bentuk budidaya tanaman kopi organik tersebut, pada perkembangannya berdampak kepada sektor lain, yaitu bidang pariwisata. Sektor pariwisata yang kini sedang menjadi trand dalam percaturan industri kepariwisataan berbasis kearifan lokal. Isu kearifan lokal yang menjadi daya tarik dan bernilai ekonomis tinggi, menjadi peluang besar untuk dikembangkan oleh masyarakat lokal setempat. Perubahan pada tradisi bertani kopi yang dikembangkan oleh masyarakat desa hutan di Gunung Puntang, bukan semata-mata masyarakatnya untuk mencari keuntungan, namun ada faktor internal yang harus dijaga, bahwa masyarakat petani kopi Gunung Puntang merasa termotivasi dengan situasi alam dan lingkungan yang subur sebagai lahan pertanian. Adapun faktor eksternal yang mempengaruhi terjadinya komodifikasi antara lain dipengaruhi oleh adanya peluang dan tatangan kondisi perekonomian di era teknologi dan informatika sekarang. Itulah yang membuat tradisi bertani kopi organik ini sangat kuat untuk dipertahankan dan sudah melekat di mata masyarakat karena telah memberikan manfaat banyak bagi masyarakat daerah. Tulisan ini merupakan deskripsi ilmiah dari sebuah penelitian lapangan yang menggambarkan peran petani dalam menjaga hutan konservasi atau hutan sosial di Gunung Puntang dinilai penting agar pengetahuan kearifan masyarakat dalam memanfaatkan tumbuhan tersebut tidak hilang oleh adanya arus moderenisasi.Kata Kunci: Tradisi Budidaya Kopi Organik, Komodifikasi, Pengembangan Pariwisata Budaya, Gunung Puntang.ABSTRACT The reality that occurs in the community of Gunung Puntang has become a tradition of organic coffee cultivation, as a barn of the people's economy that develops into the appeal of local wisdom-based tourism. Related to the tradition of the people's agricultural system in the form of organic coffee crop cultivation, in the development impact to other sectors, namely the tourism industry. The tourism industry is now being new in the world of local wisdom-based tourist industry. The issue of local wisdom that becomes an attraction and high economical value, becomes a great opportunity to be developed by local communities. The traditions changes of farming coffee are developed by the community of Forest villages in Gunung Puntang, not merely the people to seek profit, but there are internal factors to be guarded, that the community of coffee farmers Gunung Puntang feel motivated by the situation of natural and fertile environment as farmland. As for the external factors that affect the occurrence of commodification, among others, is influenced by the opportunity and the level of economic conditions in the era of technology and informatics now. That is what makes this tradition of organic coffee farming is very strong to be maintained and already inherent in the eyes of society because it has provided many benefits to the local community. This paper is a scientific description of a field study describing the role of farmers in preserving the forest of conservations or social forests at Gunung Puntang is important to make knowledge of people's wisdom in utilizing the plant is not lost by the presence of modernization.Keywords: The Tradition Of Organic Coffee Cultivation, Commodification, Tourism Development, Gunung Puntang.


2020 ◽  
Vol 11 (1) ◽  
pp. 054
Author(s):  
José Antonio De Miranda Lammoglia ◽  
Nilson Brandalise ◽  
Cecilia Toledo Hernandez

The scenario of global competitiveness demands more and more of the organizations the search for continuous improvement. For survival, in the face of adverse market conditions, modern production management strategies are essential to make production processes increasingly efficient, lean and sustainable, minimizing losses in their production systems. In this sense, when thinking about changes in production lines, in search of improvements in their process, criteria that provide Benefits, Opportunities, Costs and Risks (BOCR) should be considered. In this way, managers and executives should rely on tools and methods that allow them to guide their decisions in a clear way. The objective of this work is to apply a method of Decision Making with Multiple Criteria to the alternatives of investment projects in production lines in Lean Manufacturing concept. As a general result, it was possible to observe the applicability of the AHP BOCR method for the decision-making case involving several criteria and subcriteria for choosing the Lean investment project in the steel environment, the preferred alternative being the discontinuity of the production line 1 and the absorption of their respective production volume by production lines 2 and 3 through investments in them.


Sign in / Sign up

Export Citation Format

Share Document