A technique for assessing environmental impact risks of agricultural systems

2009 ◽  
Vol 24 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Olha Sydorovych ◽  
Charles W. Raczkowski ◽  
Ada Wossink ◽  
J. Paul Mueller ◽  
Nancy G. Creamer ◽  
...  

AbstractConventional agriculture often aims to achieve high returns without allowing for sustainable natural resource management. To prevent environmental degradation, agricultural systems must be assessed and environmental standards need to be developed. This study used a multi-factor approach to assess the potential environmental impact risk of six diverse systems: five production systems and a successional system or abandoned agronomic field. Assessment factors were soil quality status, amount of pesticide and fertilizer applied and tillage intensity. The assessment identified the best management practices (BMP)–conventional tillage system as a high-risk system mostly because of extensive tillage. The certified organic system was also extensively tilled and was characterized by P build-up in the soil, but performed well based on other assessment factors. Conversely, the BMP–no tillage and the crop–animal integrated system were characterized as low risk mainly because of reduced tillage. The paper discusses assessment strengths and weaknesses, ways to improve indicators used, and the need for additional indicators. We concluded that with further development the technique will become a resourceful tool to promote agricultural sustainability and environmental stewardship and assist policy-making processes.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 440A-440 ◽  
Author(s):  
G.D. Hoyt ◽  
J.E. Walgenbach ◽  
P.B. Shoemaker

This experiment was designed to compare best management practices for conventional and conservation tillage systems, chemical IPM vs. organic vegetable production, and rotation effect on tomatoes. Three vegetables were grown under these management practices with sweet corn (1st year) and fall cabbage or cucumber (2nd year), and fall cabbage on half of the field plots and tomatoes on the other half. The treatments were: 1) conventional-tillage with chemical-based IPM; 2) conventional-tillage with organic-based IPM; 3) conservation-tillage with chemical-based IPM; 4) conservation-tillage with organic-based IPM; and 5) conventional-tillage with no fertilizer or pest management (control). This poster describes sweet corn, cabbage, and cucumber yields from the various treatments over two 3-year rotations. Sweet corn yields were 34% higher in treatments with chemical fertilizer and pest control than with organic methods. Ear worm damage was high (58%) in the organic treatment compared to the chemical IPM program (14%). Fall cabbage was planted after sweet corn and cucumber harvest (all treatments were reapplied). Marketable cabbage yields were in the order: conventional-tilled-organic > strip-tilled-chemical > conventional-tilled-chemical > strip-till-organic > control for both years. Percent culls (< .9 kg heads) were in reverse order of marketable heads. Cabbage insect control was similar in chemical IPM and organic management. Cucumber yields were in the order: conventional-tilled-chemical > conventional-tilled-organic = strip-till-chemical > strip-tilled-organic > control for both years. Insect damage on cucumber fruit was 51% for organic systems and 1% for chemical methods of production. No differences were seen between tillage system within the same production system (chemical vs organic).


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1000D-1000 ◽  
Author(s):  
Greg D. Hoyt

This experiment was designed to compare best management practices for conventional and conservation tillage systems, chemical IPM vs. organic vegetable production, and rotation effect on tomatoes. Four vegetables were grown under these management practices with peppers (first year), yellow squash and fall broccoli (second year) on half of the field plots and tomatoes on the other half. For the third year, both sections of the field plots were tomatoes. The treatments were: 1) conventional-tillage with chemical-based IPM; 2) conventional-tillage with organic-based IPM; 3) conservation-tillage with chemical-based IPM; 4) conservation-tillage with organic-based IPM; and 5) conventional-tillage with no fertilizer or pest management (control). This poster describes pepper, yellow squash, fall broccoli, and tomato yields from the various treatments over the 3-year rotation. These results are for the third rotation sequence (years 79). Pepper yields were higher in treatments with chemical fertilizer and pest control. Fall broccoli yields were in the order: strip-tilled-chemical ≥ strip-till-organic ≥ conventional-tilled-chemical ≥ conventional-tilled-organic ≥ control. Yellow summer squash yields were in the order: conventional-tilled-chemical ≥ conventional-tilled-organic ≥ strip-till-chemical ≥ strip-tilled-organic ≥ control. Tomato yields were in the order: conventional-tilled chemical ≥ strip-till-chemical ≥ conventional-tilled-organic ≥ strip-tilled-organic ≥ control for each of the 3 years.


2012 ◽  
Vol 52 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Beata Feledyn-Szewczyk

Abstract The research was conducted from 2008 to 2010, and compared the influence of different weed control methods used in spring wheat on the structure of the weed communities and the crop yield. The study was carried out at the Experimental Station of the Institute of Soil Science and Plant Cultivation - State Research Institute in Osiny as part of a long-term trial where these crop production systems had been compared since 1994. In the conventional and integrated systems, spring wheat was grown in a pure stand, whereas in the organic system, the wheat was grown with undersown clover and grasses. In the conventional system, herbicides were applied two times in a growing season, but in the integrated system - only once. The effectiveness of weed management was lower in the organic system than in other systems, but the dry matter of weeds did not exceed 60 g/m2. In the integrated system, the average dry matter of weeds in spring wheat was 4 times lower, and in the conventional system 10 times lower than in the organic system. Weed diversity was the largest in spring wheat cultivated in the organic system. In the conventional and integrated systems, compensation of some weed species was observed (Viola arvensis, Fallopia convolvulus, Equisetum arvense). The comparison of weed communities using Sorenson’s indices revealed more of a similarity between systems in terms of number of weed species than in the number of individuals. Such results imply that qualitative changes are slower than quantitative ones. The yield of grain was the biggest in the integrated system (5.5 t/ha of average). It was 35% higher than in the organic system, and 20% higher than in conventional ones.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


2017 ◽  
Author(s):  
John Moran ◽  
Philip Chamberlain

Blueprints for Tropical Dairy Farming provides insight into the logistics, infrastructure and management required for the development of small and large dairy farms in tropical developing countries. Farmers will learn how to improve the welfare, milk quality and productivity of their dairy herds. This book complements author John Moran’s five previous books on the principles of tropical dairy farming. The manual covers a wide range of topics related to ensuring the sustainability of dairy production systems in tropical developing countries, such as South and East Asia, Africa and Central America. It also provides guidelines for the best management practices of large-scale, more intensive dairy systems. While smallholder farms are the major suppliers of milk in the tropics, many larger farms are becoming established throughout the tropics to satisfy the increasing demands for fresh milk. Blueprints for Tropical Dairy Farming will be a valuable resource for farmers and stockpeople who want to improve the productive performance of their dairy herds, farm advisers who can assist farmers to achieve this aim, educators who develop training programs for farmers or who train dairy advisers in the basics of dairy production technology, and other stakeholders in tropical dairy production, such as local agribusiness, policy makers and research scientists. National and international agencies will learn new insights into the required long-term logistics for regional dairy development, while potential investors will acquire knowledge into intensive tropical dairy farming.


2017 ◽  
Vol 38 (5) ◽  
pp. 2921 ◽  
Author(s):  
Iara Maria Lopes ◽  
Shirlei Almeida Assunção ◽  
Ana Paula Pessim de Oliveira ◽  
Lúcia Helena Cunha dos Anjos ◽  
Marcos Gervasio Pereira ◽  
...  

The gradual change in management practices in sugarcane (Saccharum spp.) production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM) contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1) soil fertility parameters; (2) on physical carbon fractions; (3) and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT) or minimum tillage (MT)) and subplots (residue burned or unburned at harvesting), with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC) were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.


2008 ◽  
Vol 23 (04) ◽  
pp. 265-271 ◽  
Author(s):  
John R. Hendrickson ◽  
J.D. Hanson ◽  
Donald L. Tanaka ◽  
Gretchen Sassenrath

AbstractAgriculture has been very successful in addressing the food and fiber needs of today's world population. However, there are increasing concerns about the economic, environmental and social costs of this success. Integrated agricultural systems may provide a means to address these concerns while increasing sustainability. This paper reviews the potential for and challenges to integrated agricultural systems, evaluates different agricultural systems in a hierarchical systems framework, and provides definitions and examples for each of the systems. This paper also describes the concept of dynamic-integrated agricultural systems and calls for the development of principles to use in developing and researching integrated agricultural systems. The concepts in this paper have arisen from the first in a series of planned workshops to organize common principles, criteria and indicators across physiographic regions in integrated agricultural systems. Integrated agricultural systems have multiple enterprises that interact in space and time, resulting in a synergistic resource transfer among enterprises. Dynamic-integrated agricultural systems have multiple enterprises managed in a dynamic manner. The key difference between dynamic-integrated agricultural systems and integrated agricultural systems is in management philosophy. In an integrated agricultural system, management decisions, such as type and amount of commodities to produce, are predetermined. In a dynamic-integrated system, decisions are made at the most opportune time using the best available knowledge. We developed a hierarchical scheme for agricultural systems ranging from basic agricultural production systems, which are the simplest system with no resource flow between enterprises, to dynamic-integrated agricultural systems. As agricultural systems move up in the hierarchy, their complexity, amount of management needed, and sustainability also increases. A key aspect of sustainability is the ability to adapt to future challenges. We argue that sustainable systems need built-in flexibility to achieve this goal.


2014 ◽  
Vol 76 ◽  
pp. 211-216
Author(s):  
Iris Vogeler ◽  
Mark Shepherd ◽  
Gina Lucci

Abstract Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. We investigated the effects of N fertiliser management on pasture production and modelled N losses, either via direct leaching of fertiliser N, or indirectly through N uptake and subsequent excretion via dairy cow grazing. The Agricultural Production Systems Simulator (APSIM) was first tested with experimental data from fertiliser response experiments conducted on a well-drained soil in the Waikato region of New Zealand. The model was then used in a 20- year simulation to investigate the effect of fertiliser management on pasture response and the impacts on potential leaching losses. The risk of direct leaching from applied fertiliser was generally low, but at an annual rate of 220 kg N/ha exceeded that from urine patches in one out of 10 years. The main effect of N fertiliser on leaching risk was indirect via the urine patch by providing higher pasture yields and N concentrations. Best management practices could include identification of high risk periods based on environmental conditions (e.g. soil moisture, plant growth), avoidance of fertiliser applications in these periods and the use of duration controlled grazing (DCG) to prevent excreta deposition onto the grazing area during critical times. Keywords: Modelling, APSIM, N fertilisation rates, N fertilisation timing, direct and indirect leaching, urine patches


2013 ◽  
Vol 23 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton

This publication summarizes the factors influencing controlled-release fertilizer (CRF) nutrient release, CRF placement, CRF rate, and CRF application timing for the two major seepage-irrigated vegetable production systems (plasticulture and open-bed) in Florida. One of several best management practices for vegetable production, CRF helps growers achieve total maximum daily loads (TMDLs) established in Florida under the Federal Clean Water Act. Several factors intrinsic to CRF and to the vegetable production systems affect CRF nutrient release, making implementation of CRF fertility programs challenging. Increasing or decreasing soil temperature increases or decreases nutrient release from CRF. Soil moisture required for uninhibited plant growth is within the soil moisture range for optimum CRF nutrient release. CRF substrate affects nutrient release rate, which is inversely related to coating thickness and granule size. Soil microbes, soil texture, and soil pH do not influence nutrient release rate. Field placement of CRFs in seepage-irrigated, plasticulture, and open-bed production should be in the bottom mix at bed formation and soil incorporated or banded at planting, respectively. In plasticulture production systems, soil fumigation and delayed planting for continuous harvest may add a 14- to 21-day lag period between fertilization and planting, which along with different season lengths will influence CRF release length selected by growers. Using a hybrid fertilizer system in plasticulture production or incorporating CRF at planting in open-bed production allows for up to a 25% reduction in the nitrogen (N) rate needed.


Sign in / Sign up

Export Citation Format

Share Document