scholarly journals Microbial Consortia versus Single-Strain Inoculants: An Advantage in PGPM-Assisted Tomato Production?

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 105 ◽  
Author(s):  
Klára Bradáčová ◽  
Andrea Florea ◽  
Asher Bar-Tal ◽  
Dror Minz ◽  
Uri Yermiyahu ◽  
...  

The use of biostimulants with plant growth-promoting properties, but without significant input of nutrients, is discussed as a strategy to increase stress resistance and nutrient use efficiency of crops. However, limited reproducibility under real production conditions remains a major challenge. The use of combination products based on microbial and non-microbial biostimulants or microbial consortia, with the aim to exploit complementary or synergistic interactions and increase the flexibility of responses under different environmental conditions, is discussed as a potential strategy to overcome this problem. This study aimed at comparing the efficiency of selected microbial single-strain inoculants with proven plant-growth promoting potential versus consortium products under real production conditions in large-scale tomato cultivation systems, exposed to different environmental challenges. In a protected greenhouse production system at Timisoara, Romania, with composted cow manure, guano, hair-, and feather-meals as major fertilizers, different fungal and bacterial single-strain inoculants, as well as microbial consortium products, showed very similar beneficial responses. Nursery performance, fruit setting, fruit size distribution, seasonal yield share, and cumulative yield (39–84% as compared to the control) were significantly improved over two growing periods. By contrast, superior performance of the microbial consortia products (MCPs) was recorded under more challenging environmental conditions in an open-field drip-fertigated tomato production system in the Negev desert, Israel with mineral fertilization on a high pH (7.9), low fertility, and sandy soil. This was reflected by improved phosphate (P) acquisition, a stimulation of vegetative shoot biomass production and increased final fruit yield under conditions of limited P supply. Moreover, MCP inoculation was associated with selective changes of the rhizosphere-bacterial community structure particularly with respect to Sphingobacteriia and Flavobacteria, reported as salinity indicators and drought stress protectants. Phosphate limitation reduced the diversity of bacterial populations at the root surface (rhizoplane) and this effect was reverted by MCP inoculation, reflecting the improved P status of the plants. The results support the hypothesis that the use of microbial consortia can increase the efficiency and reproducibility of BS-assisted strategies for crop production, particularly under challenging environmental conditions.

2004 ◽  
Vol 50 (8) ◽  
pp. 521-577 ◽  
Author(s):  
Yoav Bashan ◽  
Gina Holguin ◽  
Luz E de-Bashan

This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1073-1075 ◽  
Author(s):  
G. S. Raupach ◽  
J. W. Kloepper

Field trials were conducted in 1996 and 1997 to determine the effect of plant growth-promoting rhizobacteria (PGPR) strains, which previously were found to induce systemic resistance in cucumber, on cucumber plant growth and on naturally occurring cucumber diseases with and without methyl bromide fumigation. Seven PGPR seed treatments included single-strain treatments and mixtures of Bacillus pumilus strain INR7, Curtobacterium flaccumfaciens strain ME1, and Bacillus subtilis strain GB03. In both years, in the absence of methyl bromide, all seven PGPR treatments significantly promoted plant growth, compared to the non-treated control, while with methyl bromide fumigation, only 3 and 1 of the same PGPR treatments promoted growth significantly in 1996 and 1997, respectively. In 1996, main runner length of plants in all seven PGPR treatments without fumigation was statistically equivalent to the main runner length of the nontreated control with methyl bromide fumigation. Naturally occurring foliar diseases were angular leaf spot, caused by Pseudomonas syringae pv. lachrymans in 1996, and a mixed infestation of angular leaf spot and anthracnose, caused by Colletotrichum orbiculare in 1997. In both years, all PGPR treatments significantly reduced severity of foliar disease, compared to the nontreated control, with and without methyl bromide. Mixtures of PGPR strains showed a higher level of disease protection in both years with and without methyl bromide. The results indicate that attempts to develop PGPR-mediated induced systemic resistance into components of vegetable integrated pest management should not be negatively impacted by the planned withdraw of MeBr from standard vegetable production and that PGPR may help compensate for reduced plant growth often seen without methyl bromide fumigation.


2021 ◽  
Vol 9 (2) ◽  
pp. 426
Author(s):  
Silvia Tabacchioni ◽  
Stefania Passato ◽  
Patrizia Ambrosino ◽  
Liren Huang ◽  
Marina Caldara ◽  
...  

A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1179
Author(s):  
Judith Naamala ◽  
Donald L. Smith

Climate change has already affected food security in many parts of the world, and this situation will worsen if nothing is done to combat it. Unfortunately, agriculture is a meaningful driver of climate change, through greenhouse gas emissions from nitrogen-based fertilizer, methane from animals and animal manure, as well as deforestation to obtain more land for agriculture. Therefore, the global agricultural sector should minimize greenhouse gas emissions in order to slow climate change. The objective of this review is to point out the various ways plant growth promoting microorganisms (PGPM) can be used to enhance crop production amidst climate change challenges, and effects of climate change on more conventional challenges, such as: weeds, pests, pathogens, salinity, drought, etc. Current knowledge regarding microbial inoculant technology is discussed. Pros and cons of single inoculants, microbial consortia and microbial compounds are discussed. A range of microbes and microbe derived compounds that have been reported to enhance plant growth amidst a range of biotic and abiotic stresses, and microbe-based products that are already on the market as agroinputs, are a focus. This review will provide the reader with a clearer understanding of current trends in microbial inoculants and how they can be used to enhance crop production amidst climate change challenges.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
H. Etesami ◽  
H. Mirsyedhosseini ◽  
H. A. Alikhani

A simple screening method to detect berseem clover (Trifolium alexandrinum) endophytic bacteria for rice plant growth-promoting agents on the basis of a root colonization bioassay and a plant growth promoting trait is characterized. Firstly, 200 isolates (80 endophytes and 120 rhizospheric isolates) isolated from berseem clover were inoculated as 10 mixtures of 20 strains each on two rice varieties under gnotobiotic conditions. Then, the reisolated endophytic strains from two rice varieties were characterized for plant growth promoting (PGP) traits. Secondly, the colonization and growth promoting effects of endophytic strains were compared in inoculated rice plantlets as single-strain inoculants. A significant relationship among indole-3-acetic acid (IAA) producing isolates, the size of root colonization, and plant growth was observed. Our results suggest that the ability of IAA production by the endophytic bacteria which may have a stimulatory effect on plant development may be the first plant growth promoting trait for screening bacteria isolated from clover plant for rice plant growth promoting agents. In addition, this study indicates that the selected bacterial isolates based on their IAA producing trait have the potential for PGP and more colonization of rice plant.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 21-21
Author(s):  
Madison Cole ◽  
S Leanne L Dillard

Abstract Commercial N fertilizer are labor intensive and expensive for many forage producers. Alternative N fertility options are necessary for the long-term sustainability of forage systems. A 2-yr experiment evaluating plant growth-promoting rhizobacteria (PGPR) as an alternative N source for ‘Russell’ bermudagrass (C. dactylon) and ‘KY 31’ tall fescue (L. arundinaceum) was conducted in Alabama. Fourteen, 3-m2 plots were treated with full N (56 kg/ha) and ½ N (28 kg/ha), Accomplish LM (AMS), AMS + ½ N, DH44, Blend 20, and a control. DH44 is a single strain of Paenibacillus sonchi, while Blend 20 contains 2 strains of Bacillus pumilus and 1 strain of B. spaericus. Forage samples were taken every 4 weeks with a 0.1-m2 quadrat then analyzed for NDF, ADF, CP, and yield using NIRS. Data were analyzed using Proc GLIMMIX of SAS 9.4 (SAS Inst., Cary, NC) as a completely randomized design (n = 2). For both forages, full N had greater (P < 0.0139) yield when compared to the control (tall fescue: 8,295 vs. 7,353 kg/ha; bermudagrass: 9,329 vs. 8,109 kg/ha). There were no differences (P ≥ 0.05) in NDF concentration for either forage. Full and ½ N had greater CP than AMS in bermudagrass (11.5, 11.4%; P ≤ 0.0490). Blend 20 treated bermudagrass had greater ADF than full and ½ N (32.7, 30.7, and 30.9%, respectively; P < 0.0313). Blend 20 treated tall fescue had greater ADF compared to AMS + N and DH44 (35.8, 12.1, and 33.9%, respectively; P < 0.0227). Full N tall fescue had greater CP) compared to AMS (12.1, AMS CP %, respectively; P < 0.0082). DH44 had greater CP compared to AMS and Blend 20 (11.9, 11.0, and 11.0%, respectively; P < 0.0423). For both forages, PGPR treated plots produced yields and maintained forage nutritive value not different than the commercial fertilizer.


Sign in / Sign up

Export Citation Format

Share Document