scholarly journals Perennial Ryegrass Wear Resistance and Soil Amendment by Ca- and Mg-Silicates

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 578 ◽  
Author(s):  
Derek T. Pruyne ◽  
Maxim J. Schlossberg ◽  
Wakar Uddin

Proactive optimization of soil chemistry is a task commonly overlooked by agronomic practitioners. Agricultural field assessments have reported depletion of extractable soil silicon (Si) from shallow depths of intensively managed systems. While not recognized as a plant-essential nutrient, Si accumulates in epidermal and vascular tissue of grass leaves, sheaths, and shoots. A field study of Ca/Mg-silicate (SiO3) pelletized soil conditioner was initiated on a perennial ryegrass (Lolium perenne L. cvs. 1:1:1 Manhattan, Brightstar SLT, Mach 1) athletic field in 2010. Plots were trafficked by a wear simulator weekly, June through Sept. in 2011 and 2012. Canopy quality measures, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were regularly collected over the two-year study. Under intense wear treatment (traffic), perennial ryegrass plots treated annually by granular application of 1220 or 2440 kg Ca/Mg-silicates per hectare showed significantly improved mean canopy density relative to plots receiving equal Ca and Mg as lime. These described Ca/Mg-SiO3 annual application rates coincided with acetic acid extractable soil Si levels > 70 mg kg−1 in the 0- to 8-cm soil depth. Experimental and temporal variability preclude reporting of a critical threshold concentration of leaf Si for improved perennial ryegrass wear tolerance. Future efforts towards this end should sample tissue of plots receiving wear treatment, rather than adjacent, non-worn proxies.

Agriculture ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 43
Author(s):  
Derek T. Pruyne ◽  
Maxim J. Schlossberg ◽  
Wakar Uddin

Depletion of extractable silicon (Si) from surface soil depths has been observed in managed production systems. While not characterized as a plant essential nutrient, Si accrues in epidermal and vascular tissue of monocotyledonous plants. A field evaluation of granular Ca/Mg-rich liming agents was initiated on a creeping bentgrass (Agrostis stolonifera L. cv. Declaration) fairway in 2010. Excluding the control, treatments comprised 2440 kg (ha year)−1 topdressing of calcitic/dolomitic blended limestone or Ca/Mg-SiO3 in semi-annual or more frequent “split” applications. Each week of the 2011 and 2012 growing seasons, a dedicated wear simulator trafficked the fairway plots. Measures of canopy quality, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were collected frequently. The described Ca/Mg-SiO3 annual topdressing rates correlated with acetic acid extractable Si levels >30 mg kg−1 in the 0- to 5-cm soil depth. Neither creeping bentgrass vigor, nutrition, nor leaf water content was influenced by significantly elevated levels of soil and tissue Si. Relative to non-trafficked plots, all split plots within trafficked main plots showed similarly reduced canopy quality regardless of topdressing treatment. If a critical threshold leaf Si concentration for creeping bentgrass wear tolerance enhancement exists, it is unlikely <11 g Si kg−1.


2010 ◽  
Vol 61 (5) ◽  
pp. 353 ◽  
Author(s):  
L. L. Burkitt ◽  
D. J. Donaghy ◽  
P. J. Smethurst

Pasture is the cheapest source of feed for dairy cows, therefore, dairy pastures in Australia are intensively managed to maximise milk production and profits. Although soil testing commonly suggests that soils used for dairy pasture production have adequate supplies of phosphorus (P), many Australian dairy farmers still apply fertiliser P, often by applying smaller rates more frequently throughout the year. This study was designed to test the hypotheses that more frequent, but lower rates of P fertiliser applied strategically throughout the growing season have no effect on dry matter production and P concentration in perennial ryegrass (Lolium perenne L.), when soil extractable P concentrations are above the critical value reported in the literature. Three field sites were established on rain-fed dairy pasture soils ranging in P sorption capacity and with adequate soil P concentrations for maximising pasture production. Results showed that applied P fertiliser had no effect on pasture production across the 3 sites (P > 0.05), regardless of rate or the season in which the P was applied, confirming that no P fertiliser is required when soil extractable P concentrations are adequate. This finding challenges the viability of the current industry practice. In addition, applying P fertiliser as a single annual application in summer did not compromise pasture production at any of the 3 sites (P > 0.05), which supports the current environmental recommendations of applying P during drier conditions, when the risk of surface P runoff is generally lower. The current results also demonstrate that the short-term cessation of P fertiliser application may be a viable management option, as a minimal reduction in pasture production was measured over the experimental period.


2019 ◽  
Vol 8 (1) ◽  
pp. 82-86
Author(s):  
Anastasia Olegovna Oznobihina

The aim of the study is to conduct biological testing at the initial stages of plant objects viability in the model conditions of heavy metal pollution. The paper presents the results of laboratory experiments to assess the impact of different concentrations of heavy metal salts on the viability of yellow melilot and great trefoil seeds. In the course of the conducted experimental studies the author has been established a direct dependence of the decrease in the indices of germination energy and laboratory germination of seeds with an increase in the concentration of phytotoxicant salts, determined the critical (threshold) concentration of the studied elements and the metal content, in which the processes of growth and development of seeds remain. The concentration of 0,01% cadmium, zinc, lead and copper was optimal for germination of melilot seeds, where germination was equal to 80%, 74%, 69% and 64%, respectively. For great trefoil seeds, high germination rates were noted in case of 0,01% contamination with lead, zinc, cadmium and copper - 82%, 80%, 77% and 76%, respectively, and in 0,1% salt solution of lead, copper and zinc there were recorded 75%, 74% and 72% of seedlings. Zinc in the concentration of 0,01% at the initial stages of germination of phytomeliorant seeds stimulated germination energy. The tendency of resistance to pollution by lead, zinc and copper was observed at sprouts of a great trefoil, and to pollution by cadmium the greatest resistance was shown by a melilot yellow. Defining the limits of the leguminous plant seeds germination in the presence of a toxic agent will allow research and development in respect of biological restoration of contaminated soils and can be used in technologically disturbed lands.


1991 ◽  
Vol 261 (2) ◽  
pp. H451-H456 ◽  
Author(s):  
Y. H. Ma ◽  
D. R. Harder ◽  
J. E. Clark ◽  
R. J. Roman

12-Hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) is one of the major noncyclooxygenase eicosanoids formed in vascular tissue. The vasoactive effects of the cytochrome P-450 product, 12(R)-HETE and the lipoxygenase product, 12(S)-HETE, on isolated, perfused renal arcuate arteries of the dog were investigated using videomicroscopy. R and S refer to stereoconfiguration of the hydroxy group at the twelfth position of this fatty acid structure. Cumulative doses of 12(R)-HETE produced a concentration-dependent vasoconstriction (n = 9) with a threshold dose of 10(-9) M. At a concentration of 3 x 10(-7) M, 12(R)-HETE reduced vascular diameter by 63 +/- 8 microns (from 306 +/- 17 microns), which was 37 +/- 6% of the maximal vasoconstrictor response to norepinephrine (10(-6) M). The effects of 12(R)-HETE were not altered by indomethacin (10(-6) M, n = 8). The vasoconstrictor response was associated with depolarization of vascular smooth muscle from -47 +/- 1 (15 cells) to -32 +/- 1 mV (12 cells). 12(S)-HETE was also a vasoconstrictor (n = 6), but the threshold concentration for vasoconstriction was 10(-8) M. Small renal arteries obtained from ischemic-injured, but not normal, kidneys produced a metabolite when incubated with arachidonic acid, which coeluted with a 12-HETE standard using reverse-phase high-pressure liquid chromatography. The rate of synthesis of this 12-HETE-like metabolite by renal arteries obtained from ischemic-injured and normal kidneys averaged 1.2 +/- 0.4 (n = 9) and 0.1 +/- 0.1 (n = 7) pmol.h-1.mg tissue-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 31 (4) ◽  
pp. 575 ◽  
Author(s):  
AW Whiley ◽  
KG Pegg ◽  
JB Saranah ◽  
PW Langdon

Phosphonate at 3 concentrations (7.5, 10 and 20%) was injected into the trunks of avocado (Persea americana Mill.) trees showing advanced symptoms of canopy decline caused by phytophthora root rot. All formulations of phosphonate and potassium phosphonate, including the lower rates of 7.5 and 10%, successfully controlled root rot and resulted in improved tree health. The 7.5% phosphonate treatment permitted the formulation of chemically compatible mixtures containing zinc and boron which, when trunk-injected, increased the concentrations of these nutrients in mature summer-grown leaves. Phosphonate formulations containing 17% zinc chelate or 10% zinc nitrate and injected twice during a growing season, at 15 mL/m canopy diameter, increased leaf zinc concentrations above the critical level of 30 mg/kg DM. However, the inclusion of zinc chelate in formulations substantially increased the time of uptake of the injection compared with the formulation containing zinc nitrate. Phosphonate formulations with 0.9% boron, injected twice during a growing season at 15 mL/m canopy diameter, improved leaf boron concentrations, but they failed to reach the critical threshold concentration of 50 mg/kg DM.


2017 ◽  
Vol 44 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J.A. Arnold III ◽  
J.P. Beasley ◽  
G.H. Harris ◽  
T.L. Grey ◽  
M. Cabrera

ABSTRACT Calcium (Ca) availability in the 0 to 8 cm soil depth often limits peanut yield and influences grade in the southeastern United States. Field experiments were conducted in 2012 and 2013 at the University of Georgia's Coastal Plain Experiment Station, Tifton, GA (CPES) and the Southwest Georgia Research and Education Center, Plains, GA (SWREC) to determine large-seeded (Georgia-06G) and medium-seed sized (Georgia Greener) runner-type cultivar response to gypsum application rates of 0, 560, 1120, 1650 kg/ha. Peanut pod yield and grade (TSMK) were significantly different between locations with 7610 and 6540 kg/ha at CPES and SWREC, respectively. However, there were no differences between peanut cultivars or gypsum rates. Standard germination, seed vigor (cold germination), and seed Ca content analysis were also conducted on subsamples from each plot. Average peanut seed germination was 97% across all samples. No differences were observed for standard germination or vigor testing. Differences in locations were observed for yield, TSMK, percent jumbo, percent medium kernels, and seed Ca content. Peanut cultivar and gypsum application rate had effects on seed Ca concentration. Seed Ca concentration levels were 825 and 787 mg/kg for Georgia Greener and Georgia-06G, respectively. Seed Ca content increased as field gypsum application rate increased at both locations.


Soil Research ◽  
2007 ◽  
Vol 45 (8) ◽  
pp. 586 ◽  
Author(s):  
Oagile Dikinya ◽  
Christoph Hinz ◽  
Graham Aylmore

The paper examines the effects of electrolyte concentration and sodium adsorption ratio (SAR) on the relative saturated hydraulic conductivity (RHC) and the ionic behaviour of calcium (Ca) and sodium (Na) ions in the Na–Ca exchange complex. Batch binary exchange and saturated column transport experiments were carried out to quantify these effects using an agricultural Balkuling soil and a mining residue. Generally, RHC has been found to decrease with time, with increasing SAR, and with decreasing electrolyte concentration. The more rapid decrease in RHC in the mining residue, particularly at the lowest concentration (1 mmol/L), was consistent at all SAR values. The decreases in RHC were likely to be caused by partial blocking of pores by dispersed clay particles, as evidenced by the appearance of suspended clay particles in the effluent during leaching. Significant differences in RHC were observed in the passage of fronts of decreasing electrolyte concentrations for CaCl2 and SAR 15 solutions through the soil columns. These differences were attributable to structural alterations (slaking) of the media and the nature of the particles released and mobilised within the porous structure at any given point in the column. Measurements at the critical threshold concentration and turbidity concentration at SAR 15 revealed structural breakdown of the pore matrix system as evidenced by decreased RHC. The increase in SAR to 15 is initially accompanied by erratic RHC, presumably due to the break up of soil aggregates under the increased swelling forces. The less coherent mining residue soil was substantially more vulnerable to blockage of pores than the Balkuling soil in which clay particles are likely to be more readily mobilised, and hence available to re-deposit and occlude the matrix pores.


Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 282 ◽  
Author(s):  
Jessica Coad ◽  
Lucy Burkitt ◽  
Warwick Dougherty ◽  
Leigh Sparrow

Many intensively managed soils contain phosphorus (P) concentrations greater than required for optimum production. Soils with P concentrations in excess of the agronomic optimum can have unnecessary losses of P that can adversely affect water bodies. Reducing excessive soil-P concentrations is important for the economic and environmental sustainability of intensive agriculture, such as the Australian dairy industry. However, little is known of decreases in extractable soil-P concentrations when P fertiliser applications are reduced or omitted from soils with P concentrations and properties representative of intensive pasture grazing systems. Decreases in extractable P (calcium chloride (CaCl2), Olsen and Colwell) were monitored for up to 4.5 years for six Australian grazed pasture soils (Red Ferrosol, Brown Kurosol, Grey Dermosol, Brown Dermosol, Podosol and Hydrosol) with contrasting textures and P-buffering indices (PBI). Sixteen treatments consisting of four initial extractable-P concentrations (Pinit) paired with four ongoing P fertiliser rates (Pfert) were established for each of the six soils, except on an extremely low-PBI Podosol, where a range of Pinit concentrations could not be established. The resultant decreases in P were larger with higher Pinit concentration and lower rate of ongoing Pfert, except in the extremely low PBI Podosol where decreases in initially high CaCl2-P concentrations were large irrespective of ongoing Pfert. There was a greater proportional decrease in the environmentally extractable P compared with agronomically extractable P, with mean decreases in CaCl2-P of 57%, Olsen-P of 25%, and Colwell-P of 12%. The Pinit concentrations, which were well above agronomic optimum, remained above this target. This study advances scientific knowledge of extractable soil-P concentrations when P fertiliser inputs are withheld or reduced from grazed pasture soils, and aids land and catchment managers in estimating likely changes over time.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 757-765 ◽  
Author(s):  
Matthew D. Jeffries ◽  
Travis W. Gannon

Indaziflam is a cellulose biosynthesis-inhibiting herbicide for annual weed control in various agricultural systems. Sporadic cases of unacceptable injury to desirable plants have been reported after indaziflam application, which may have been due to conditions favoring increased indaziflam–soil bioavailability. Research was conducted from 2013 to 2015 on a sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on indaziflam–soil bioavailability. Indaziflam was applied (50 or 100 g ha–1) at fall only, fall plus spring, and spring only timings to plots in a factorial arrangement of SOMC, pre–indaziflam application (PrIA) SVWC, and post–indaziflam application (PoIA) SVWC. After application, field soil cores were collected for a subsequent greenhouse bioassay experiment, where foliage mass reduction of perennial ryegrass seeded from 0 to 15 cm soil depth was used as an indicator of indaziflam–soil bioavailability throughout the profile. Significant edaphic effects were observed at 0 to 2.5, 2.5 to 5, and 5 to 7.5 cm depths, with increased bioavailability at low compared with high SOMC. Pre–indaziflam application SVWC did not affect bioavailability, whereas PoIA high SVWC increased indaziflam–soil bioavailability at 2.5 to 7.5 cm depth compared with PoIA low SVWC. Low SOMC–PoIA high SVWC decreased perennial ryegrass foliage mass 40 and 37% at 5 to 7.5 cm depth from cores collected 10 and 14 wk after treatment, respectively, whereas reductions from all other SOMC–PoIA SVWC combinations were < 12% and did not vary from each other. Pearson's correlation coefficients showed a moderate, positive relationship between perennial ryegrass mass reductions at 0 to 2.5, 2.5 to 5, 0 to 5, and 0 to 10 cm depths and hybrid bermudagrass cover reduction, which suggests conditions favoring increased indaziflam–soil bioavailability can adversely affect plant growth. Data from this research will aid land managers to use indaziflam effectively without adversely affecting growth of desirable species.


2009 ◽  
Vol 60 (3) ◽  
pp. 280 ◽  
Author(s):  
Peter S. Searles ◽  
Diego A. Saravia ◽  
M. Cecilia Rousseaux

Several studies have evaluated many above-ground aspects of olive production, but essential root system characteristics have been little examined. The objective of our study was to evaluate root length density (RLD) and root distribution relative to soil water content in three commercial orchards (north-west Argentina). Depending on the orchard, the different drip emitter arrangements included either: (1) emitters spaced continuously at 1-m intervals along the drip line (CE-4; 4 emitters per tree); (2) 4 emitters per tree spaced at 1-m intervals, but with a space of 2 m between emitters of neighbouring trees (E-4); or (3) 2 emitters per tree with 4 m between emitters of neighbouring trees (E-2). All of the orchards included either var. Manzanilla fina or Manzanilla reina trees (5–8 years old) growing in sandy soils, although the specific characteristics of each orchard differed. Root length density values (2.5–3.5 cm/cm3) in the upper soil depth (0–0.5 m) were fairly uniform along the drip line in the continuous emitter (CE-4) orchard. In contrast, roots were more concentrated in the E-4 and E-2 orchards, in some cases with maximum RLD values of up to 7 cm/cm3. Approximately 70% of the root system was located in the upper 0.5 m of soil depth, and most of the roots were within 0.5 m of the drip line. For each of the three orchards, significant linear relationships between soil water content and RLD were detected based on 42 sampling positions that included various distances from the trunk and soil depths. Values of RLD averaged over the entire rooting zone and total tree root length per leaf area for the three orchards were estimated to range from 0.19 to 0.48 cm/cm3 and from 1.8 to 3.5 km/m2, respectively. These results should reduce the uncertainty associated with the magnitude of RLD values under drip irrigation as intensively managed olive orchards continue to expand in established and new growing regions.


Sign in / Sign up

Export Citation Format

Share Document