scholarly journals Effect of GABA-T on Reproductive Function in Female Rats

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 567
Author(s):  
Wenyu Si ◽  
Hailing Li ◽  
Tiezhu Kang ◽  
Jing Ye ◽  
Zhiqiu Yao ◽  
...  

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 μg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 μg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.

1996 ◽  
Vol 151 (2) ◽  
pp. 195-201 ◽  
Author(s):  
R Grilli ◽  
V Sibilia ◽  
A Torsello ◽  
F Pagani ◽  
M Guidi ◽  
...  

Abstract To study possible age-related differences in the role of neuronal histaminergic pathways in the control of GH secretion, the effects of α-fluoromethylhistidine (α-FMH), an irreversible inhibitor of histamine (HA) synthesis, were examined on basal and opioid-induced GH release in neonatal and adult rats. The mechanisms involved in such effects were evaluated by measuring pituitary GH mRNA levels and hypothalamic levels of GH-releasing hormone (GHRH) and somatostatin (SRIF) mRNAs. Daily injection of α-FMH (20 mg/kg, s.c.) in pups of either sex, from birth until 10 days of age, caused a significant increase in baseline plasma GH and potentiated the GH response to the [Met5]-enkephalin analog FK 33–824 (1 mg/kg, s.c.) administered 3 h after the last α-FMH injection. GH and SRIF mRNA levels were significantly higher in α-FMH-treated pups than in controls, whereas no difference was observed in GHRH mRNA levels. In young adult male rats, acute administration of α-FMH (100 mg/kg, s.c., 3 h before) did not change significantly basal GH levels but potentiated FK 33–824 (0·3 mg/kg, intracarotid)-induced stimulation of GH secretion. Repeated administration of α-FMH (200 μg/rat, i.c.v., for 3 days) failed to modify basal and FK 33–824-induced GH secretion, caused a significant reduction in hypothalamic GHRH mRNA levels and left SRIF and GH mRNAs unchanged. These findings indicate that HA exerts an inhibitory effect on GH secretion in both neonatal and adult rats. The different effects of short-term HA depletion on hypothalamic and pituitary indices of somatotropic function observed at the two age periods may be ascribed to the immaturity of the HA system in early postnatal life and to a different functional role of GH-regulatory factors during ontogeny. Journal of Endocrinology (1996) 151, 195–201


Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Juneo F Silva ◽  
Patricia C Henriques ◽  
Ana C Campideli-Santana ◽  
Roberta Araujo-Lopes ◽  
Nayara S S Aquino ◽  
...  

Abstract Hyperprolactinemia causes infertility by suppressing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion. Because effects of prolactin (PRL) on the hypothalamus usually require estradiol (E2), we investigated the role of E2 in PRL-induced suppression of LH pulses. Ovariectomized (OVX) rats treated with oil or E2 (OVX + E2) received a subcutaneous injection of ovine PRL (oPRL) 30 minutes before serial measurement of LH in the tail blood by enzyme-linked immunosorbent assay. E2 reduced pulsatile LH secretion. oPRL at 1.5 mg/kg further reduced LH pulse frequency in OVX + E2 but had no effect in OVX rats. The higher dose of 6-mg/kg oPRL decreased LH pulse frequency in both OVX and OVX + E2 rats, whereas pulse amplitude and mean LH levels were lowered only in OVX + E2 rats. Kisspeptin immunoreactivity and Kiss1 messenger ribonucleic acid (mRNA) levels were decreased in the arcuate nucleus (ARC) of OVX + E2 rats. oPRL decreased both kisspeptin peptide and gene expression in the ARC of OVX rats but did not alter the already low levels in OVX + E2 rats. In the anteroventral periventricular nucleus, oPRL did not change kisspeptin immunoreactivity and, paradoxically, increased Kiss1 mRNA only in OVX + E2 rats. Moreover, oPRL effectively reduced Gnrh expression regardless of E2 treatment. In this study we used tail-tip blood sampling to determine the acute effect of PRL on LH pulsatility in female rats. Our findings characterize the role of E2 in the PRL modulation of hypothalamic components of the gonadal axis and LH release, demonstrating that E2 potentiates but is not essential for the suppression of pulsatile LH secretion caused by hyperprolactinemia.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Ahmed M. Fawzy ◽  
Sally Ibrahim ◽  
Karima Mahmoud ◽  
Bassiouni A. Heleil ◽  
I. El-Kon Ismail ◽  
...  

Summary This study aimed to compare the expression of genes regulating follicles development, survival and steroid hormones secretion in oocytes and granulosa cells (GCs) and study the correlation between their expression and follicular fluid (FF) levels of progesterone (P4) in pregnant and non-pregnant camels. In total, 138 ovarian pairs from slaughtered camels were used. Gene expression and hormonal assay were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The obtained results revealed that the number of follicles (3–8 mm) was significantly (P < 0.05) lower in pregnant, compared with non-pregnant, camels. P4 level in the FF was significantly (P < 0.05) higher in pregnant, compared with non-pregnant, camels. However, no significant (P > 0.05) difference was noticed in the oestradiol (E2) level. STAR, PTEN, IGF1 and BCL2 mRNA levels were significantly higher in GCs and significantly lower in oocytes of pregnant, compared with non-pregnant, camels. However, follicle-stimulating hormone receptor (FSHR) mRNA level was significantly lower in GCs and oocytes, and the BMP15 mRNA level was significantly lower in oocytes of pregnant, compared with non-pregnant, camels. P4 level in FF was positively correlated with STAR, PTEN, IGF1 and BCL2 mRNA levels in GCs and negatively correlated with BMP15 mRNA levels in oocytes and FSHR mRNA levels in GCs and oocytes of pregnant camels. It could be concluded that pregnancy-induced variations in oocytes and GC expression of BMP15, IGF1, FSHR, STAR, BCL2, and PTEN genes might be associated with a decrease in the number of follicles and an increase in the FF level of P4.


2021 ◽  
Vol 10 (14) ◽  
pp. 3058
Author(s):  
Aleksandra Mielczarek-Palacz ◽  
Celina Kruszniewska-Rajs ◽  
Marta Smycz-Kubańska ◽  
Jarosław Strzelczyk ◽  
Wojciech Szanecki ◽  
...  

The aim of the analysis was for the first time to assess the expression of genes encoding IL-21 and IL-22 at the mRNA level in ovarian tumor specimens and the concentration of these parameters in serum and peritoneal fluid in patients with ovarian serous cancer. The levels of IL-21 and IL-22 transcripts were evaluated with the use of the real-time RT-qPCR. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of proteins. Quantitative analysis of IL-21 gene mRNA in the tumor tissue showed the highest activity in the G1 degree of histopathological differentiation and was higher in G1 compared to the control group. The concentration of IL-21 and IL-22 in the serum and in the peritoneal fluid of women with ovarian cancer varied depending on the degree of histopathological differentiation of the cancer and showed statistical variability compared to controls. The conducted studies have shown that the local and systemic changes in the immune system involving IL-21 and IL-22 indicate the participation of these parameters in the pathogenesis of ovarian cancer, and modulation in the IL-21/IL-22 system may prove useful in the development of new diagnostic and therapeutic strategies used in patients, which require further research.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianjun Jiang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
Gengyun Sun ◽  
...  

Abstract Background This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. Methods Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. Results Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. Conclusion This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.


2014 ◽  
Vol 9 (11) ◽  
pp. 1030-1036 ◽  
Author(s):  
Yaqiu Lin ◽  
Yanying Zhao ◽  
Ruiwen Li ◽  
Jiaqi Gong ◽  
Yucai Zheng ◽  
...  

AbstractPGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Philipp Boder ◽  
Sheon Mary ◽  
Lesley Graham ◽  
Christian Delles

Abstract Background and Aims Uromodulin (UMOD) is the most abundantly secreted protein found within the urine, primarily produced by medullary thick ascending limb (mTAL) epithelial cells of the kidneys. There is accruing genetic evidence implicating UMOD in blood pressure regulation and consequently hypertension. The molecular signaling induced by calcium in the kidney and its influence on blood pressure are not well understood. The aim of this study was to investigate the potential role of extracellular calcium and the calcium-sensing receptor (CaSR) in mTAL on UMOD production and secretion in TAL cells with the hope of defining novel clinical targets for the treatment of hypertension. Method Kidneys were harvested from normotensive Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) female rats. To determine the effect of extracellular calcium on UMOD secretion, mTAL tubules were incubated in media with and without 1mM calcium, nifedipine (10µM), NPS2143 (1 or 5 µM) and spermine (2mM). Extracellular and intracellular UMOD protein levels were detected by Western blot. Gene expression of Umod was determined by qRT-PCR. Results Calcium increased mTAL tubule UMOD secretion in WKY and SHRSP. Nifedipine slightly decreased UMOD secretion in WKY without calcium. In both strains, NPS2143 increased calcium-induced UMOD secretion, with an enhanced effect in SHRSP. Stimulation of CaSR with spermine decreased UMOD secretion in WKY. Analysis of intracellular UMOD levels in these conditions demonstrated increased accumulation when extracellular secretion was low, and vice versa. Incubation of primary mTAL cells with calcium confirmed increased localisation of UMOD at the membrane compared to the cytosol, without any major differences in cell morphology. The Umod mRNA level changes were not statistically significant among conditions. Conclusion Trafficking of UMOD in the mTAL is influenced by the type of CaSR ligand and the biased nature of G-protein coupled CaSR signalling. Unravelling the signalling events post-calcium will be necessary for identification of key regulators of UMOD secretion and provide new sites for therapeutic intervention in hypertension.


1996 ◽  
Vol 271 (6) ◽  
pp. E1061-E1066 ◽  
Author(s):  
D. Meynial-Denis ◽  
M. Mignon ◽  
A. Miri ◽  
J. Imbert ◽  
E. Aurousseau ◽  
...  

Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamine synthesis in muscle. We hypothesized that the glucocorticoid induction of GS could be altered in aged rats, because alterations in the responsiveness of some genes to glucocorticoids were reported in aging. We compared the glucocorticoid-induced GS in fast-twitch and slow-twitch skeletal muscles (tibialis anterior and soleus, respectively) and heart from adult (age 6-8 mo) and aged (age 22 mo) female rats. All animals received dexamethasone (Dex) in their drinking water (0.77 +/- 0.10 and 0.80 +/- 0.08 mg/day per adult and aged rat, respectively) for 5 days. Dex caused an increase in both GS activity and GS mRNA in fast-twitch and slow-twitch skeletal muscles from adult and aged rats. In contrast, Dex increased GS activity in heart of adult rats, without any concomitant change in GS mRNA levels. Furthermore, Dex did not affect GS activity in aged heart. Thus the responsiveness of GS to an excess of glucocorticoids is preserved in skeletal muscle but not in heart from aged animals.


1996 ◽  
Vol 270 (2) ◽  
pp. F245-F253 ◽  
Author(s):  
J. H. Dominguez ◽  
C. C. Hale ◽  
M. Qulali

Gentamicin nephrotoxicity may arise in part from alterations in the expression of genes critical for renal proximal tubule metabolism. We tested the hypothesis that gentamicin suppressed the gene expression of the Na+/Ca2+ exchanger (NaCaX), glucose transporter 1 (GLUT1) and alpha 1-subunit of Na(+)-K(+)-ATPase (alpha 1-NKA) in renal tubules. The products of these genes mediate Na(+)-dependent Ca2+ efflux, glucose efflux and influx, and ATP-dependent Na+ efflux across tubular basolateral membranes, respectively. After 10 days of gentamicin intoxication (40 mg/kg ip, twice daily), levels of mRNAs encoding NaCaX and the cognate protein declined. GLUT1 mRNA levels increased, although GLUT1 protein levels were also reduced. Moreover, whereas alpha 1-NKA mRNA levels remained unchanged, alpha 1-NKA protein levels were also reduced. We suggest that the higher GLUT1 mRNA level is part of the stress response to tubular injury. However, regardless of the mRNA level, the most consistent effect of gentamicin was reduction of specific protein levels. We propose that failure to translate high levels of mRNA into proportionally high levels of protein, as in the case of GLUT1, may attenuate the expression of stress response gene products, and thus diminish the possibility of recovery in gentamicin intoxication.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 143-153 ◽  
Author(s):  
D. Thepot ◽  
J.B. Weitzman ◽  
J. Barra ◽  
D. Segretain ◽  
M.G. Stinnakre ◽  
...  

JunD is one of three mammalian Jun proteins that contribute to the AP-1 transcription factor complex. Distinct regulation and functions have been proposed for each Jun member, but less is known about the biological functions of each of these proteins in vivo. To investigate the role of JunD, we have inactivated the murine gene by replacement with a bacterial lacZ reporter gene. Embryonic JunD expression was initially detected in the developing heart and cardiovascular system. Subsequent broadening phases of JunD expression were observed during embryonic development and expression in the adult was widespread in many tissues and cell lineages. Mutant animals lack JunD mRNA and protein and showed no evidence of upregulation of c-Jun and JunB mRNA levels. In contrast to the other two Jun members, homozygous JunD−/− mutant animals were viable and appeared healthy. However, homozygous JunD−/− animals showed a reduced postnatal growth. Furthermore, JunD−/− males exhibited multiple age-dependent defects in reproduction, hormone imbalance and impaired spermatogenesis with abnormalities in head and flagellum sperm structures. No defects in fertility were observed in JunD−/− female animals. These results provide evidence for redundant functions for members of the Jun family during development and specific functions for JunD in male reproductive function.


Sign in / Sign up

Export Citation Format

Share Document