scholarly journals Factors Affecting the Patterns of Total Amount and Proportions of Leukocytes in Bovine Milk

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 992
Author(s):  
Alfonso Zecconi ◽  
Lucio Zanini ◽  
Micaela Cipolla ◽  
Bruno Stefanon

Differential leukocyte count (DSCC) in milk is considered important to improve knowledge of udder immune response. The investigations on milk DSCC were limited by the techniques available until recently, when a high-throughput tool to perform DSCC opened the way to explore these factors in rapid and economically sustainable ways. We hypothesized that DSCC alone does not fully describe the pattern of these cells, since the total amount is also influenced by milk yield and SCC. Therefore, this study was designed to describe DSCC and total amount of different leukocytes in milk during the course of lactation in cows differing in parity and in levels of SCC. This study considered 17,939 individual milk tests from 12 dairy herds in Lombardy Region, where DCC testing was applied in the period of February 2018–December 2019 (23 months). The samples were divided into two subsets—“healthy” (HS) with SCC ≤200,000 cells/mL and “inflamed” (IS) with SCC >200,000 cells/mL. Cow in HS have a P + LT average between 5.0 × 108 and 3.0 × 109 cells. In IS cows, the values were 1.6 × 1010 and 2.5 × 1010. Therefore, the presence of a well-defined inflammatory process increased the overall amount of polymorphonuclear neutrophils (PMN) and lymphocytes (LYM) of 1 log, from 1 × 109 to 1 × 1010. The assessment of the total amount of PMN and LYM, to our knowledge, have never been reported in scientific literature; the values observed may be proposed as benchmarks for studies on udder immune response. When data were analyzed by days in milk (DIM), they showed that cows in first and second lactation have a significantly lower amount of PMN + LYM, when compared to cows in third and higher lactation. However, these differences are numerically not very large (7%), and suggest that, in healthy animals, the number of immune cells is kept as constant as possible. In IS, the analysis of trends based on DIM showed that both DSCC and P + LT have a significant negative trend. These data suggest that only in this group, the presence of high SCC as lactation proceeds is associated with a progressive increase in the number of macrophages. To the best of our knowledge, this is the first study describing the pattern of DSCC and the total amount of PMN + LYM in relation to parity, days in milk, and SCC, and it may be considered as the first contribution in the investigation on mammary gland immune response by the means of differential cell counts in milk.

2008 ◽  
Vol 52 (No. 6) ◽  
pp. 231-244 ◽  
Author(s):  
C. Werner-Misof ◽  
M.W. Pfaffl ◽  
R.M. Bruckmaier

The immune response in milk cells and the status of mammary tight junctions (TJ) in response to intramammary (IM) infusion of different doses of <i>Escherichia col</i>i lipopolysaccharide (LPS) was investigated. <i>Experiment I</i>: Seven German Braunvieh cows were IM infused into one quarter with 1 &mu;g (LPS-1) and 3 &mu;g (LPS-3) of LPS, respectively, and the contralateral control quarter with saline (9 g/l; C). Milk samples were taken immediately before and 12, 24, 36, 48, 60, 84 and 108 h after infusion and analysed for somatic cell counts (SCC), lactose, sodium (Na) and chloride (Cl) ions, and electrical conductivity (EC). Milk cell mRNA expression of various inflammatory factors was quantified by real-time RT-PCR. Blood samples were taken immediately after milking for the analysis of leukocytes (WBC), polymorphonuclear neutrophils (PMN), Na and Cl. Milk SCC, lactose, Na, Cl and EC did not differ significantly between LPS-1 and C quarters after the challenge. In LPS-3 quarters SCC levels increased within the first 12 h, reached peak levels between 12 and 36 h (<i>P</i> &le; 0.001) and decreased (<i>P</i> &le; 0.05) thereafter to reach baseline at 108 hours. Lactose in LPS-3 quarters decreased (<i>P</i> &le; 0.05) to a minimum at 24 h and increased slightly thereafter while EC, Na, and Cl increased transiently in response to LPS-3. WBC and PMN levels in both groups decreased numerically within 24 h after LPS administration. In LPS-1, WBC at 24, 48 and 108 h were significantly lower whereas in LPS-3 they were significantly higher than at time 0. TNF&alpha;-mRNA expression in both groups did not change in response to IM LPS-challenge. IL-1&beta;-mRNA expression at 12, 24 and 36 h in LPS-1 quarters increased significantly as compared to time 0. In LPS-3 quarters the mRNA expression values of all tested ILs increased significantly as compared to time 0 within 12 h after LPS-challenge. IL-1&beta;-mRNA expression decreased (<i>P</i> &le; 0.05) at 48 and 84 h in LPS quarters. IL-8 mRNA was significantly decreased at 84 h after challenge in LPS-3 quarters. COX-2-mRNA expression in LPS-1 quarters decreased significantly as compared to time 0 at 48, 84 and 108 h, with a minimum at 84 h (<i>P</i> &le; 0.05). In LPS-3 quarters COX-2-mRNA levels increased (<i>P</i> &le; 0.05) within 48 h after the LPS-challenge. <i>Experiment II</i>: Six cows (5 German Braunvieh, 1 Brown Swiss) were injected in one quarter with 100 &mu;g LPS and in the contralateral quarter with saline (9 g/l; C). Mammary biopsy samples of both quarters were taken immediately before and at 3, 6, 9 and 12 h after infusion and mRNA expression of TJ proteins occludin (OCLN) and zonula occludens (ZO-) 1, 2 and 3 were quantified by real-time RT-PCR. OCLN-mRNA expression did not change in response to the IM infusion while that of ZO-1, ZO-2 and ZO-3 decreased significantly within six hours. In conclusion, a dose of 1 &mu;g LPS did not initiate a immune response in the mammary gland. Furthermore the dose of 100 &mu;g of LPS enhanced TJ permeability by reducing TJ plaque proteins density.


Author(s):  
Joanne Karzis ◽  
Inge-Marie Petzer ◽  
Edward F. Donkin ◽  
Vinny Naidoo

Antibiotic resistance of strains of Staphylococcus aureus isolated from bovine milk is of concern internationally. The objective of this study was to investigate trends of resistance of S. aureus to antibiotics administered to dairy cows in 19 South African and one Zambian dairy herds (participating in the South African proactive udder health management programme) and to identify possible contributing factors. The resistance of S. aureus strains to eight commonly used antibiotics in South Africa from 2001 to 2010 was evaluated. Staphylococcus aureus isolates (n = 2532) were selected from cows with subclinical mastitis in 20 herds routinely sampled as part of the proactive udder health management programme. The isolates were selected from milk samples that had somatic cell counts more than 400 000 cells/mL and were tested for antibiotic resistance using a standard Kirby–Bauer test with published clinical breakpoints. The prevalence of antibiotic resistance was evaluated as a percentage of S. aureus isolates susceptible out of the total numbers for each antibiotic selected per year. Staphylococcus aureus showed a significant increase in percentage of susceptible isolates over time for all antibiotics tested except for ampicillin. The overall prevalence of mastitis did not change during the study period. However, the prevalence of mastitis caused by S. aureus (mostly subclinical cases) in the selected herds decreased numerically but not significantly. Reduction in the incidence of antibiotic resistance shown by S. aureus was presumed to be a result of the application of the proactive udder health management programme. The fact that the overall prevalence of mastitis was kept stable was possibly because of the influence of the management programme in conjunction with the return of infections caused by non-resistant strains.


2010 ◽  
Vol 77 (4) ◽  
pp. 452-459 ◽  
Author(s):  
Olga Wellnitz ◽  
Amandine Baumert ◽  
Machabbat Saudenowa ◽  
Rupert M Bruckmaier

Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40–100)×103cells/ml and very low SCC of <20×103cells/ml were challenged with lipopolysaccharide (LPS) fromEscherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor α (TNF-α) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 μg LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-α concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1β and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-α and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-α concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-α, IL-8, IL-1β, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.


1960 ◽  
Vol 27 (1) ◽  
pp. 19-32 ◽  
Author(s):  
W. H. Alexander ◽  
F. B. Leech

SummaryTen farms in the county of Durham took part in a field study of the effects of feeding and of udder disease on the level of non-fatty solids (s.n.f.) in milk. Statistical analysis of the resulting data showed that age, pregnancy, season of the year, and total cell count affected the percentage of s.n.f. and that these effects were additive and independent of each other. No effect associated with nutritional changes could be demonstrated.The principal effects of the factors, each one freed from effects of other factors, were as follows:Herds in which s.n.f. had been consistently low over a period of years were compared with herds in which s.n.f. had been satisfactory. Analysis of the data showed that about 70% of the difference in s.n.f. between these groups could be accounted for by differences in age of cow, stage of lactation, cell count and breed.There was some evidence of a residual effect following clinical mastitis that could not be accounted for by residual high cell counts.The within-cow regression of s.n.f. on log cell count calculated from the Durham data and from van Rensburg's data was on both occasions negative.The implications of these findings are discussed, particularly in relation to advisory work.


2008 ◽  
Vol 75 (3) ◽  
pp. 335-339 ◽  
Author(s):  
Senkiti Sakai ◽  
Eriko Nonobe ◽  
Takahiro Satow ◽  
Kazuhiko Imakawa ◽  
Kentaro Nagaoka

Mastitis is the most frequent and prevalent production disease in dairy herds in developed countries. Based on a milk somatic cell count (SCC) of either >300 000 or <200 000 cells/ml in this study, we defined the quarter as either inflamed or uninflamed, respectively. The electrical conductivity (EC) of milk was used as an indicator of udder epithelial cell damage. We determined the amount of H2O2produced by utilizing a small molecular weight compound in milk, and examined the characteristics of H2O2production and EC in milk from inflamed and uninflamed quarters. In cows with milk of delivery grade (control population), H2O2production and EC were 3·6±1·3 nmol/ml and 5·4±0·4 mS/cm (mean±sd), respectively. In 37 inflamed quarter milk samples, the production of H2O2was 1·9±1·0 nmol/ml and was significantly smaller than that in the control population (P<0·01). Production of H2O2was moderately but significantly correlated with EC (r<−0·71). In 20 cows with inflamed quarters, the production of H2O2in milk from inflamed quarters was significantly smaller than that in milk from uninflamed quarters (P<0·01). In 18 out of 20 cows, milk from inflamed quarters showed the smallest H2O2production among all tested quarters in each cow. We conclude that inflammation caused a decrease in H2O2production in milk. In this study, we present parameters for evaluating the lactoperoxidase/H2O2/thiocyanate antibacterial defence system in bovine milk.


2017 ◽  
Vol 47 (4) ◽  
Author(s):  
Liz Gonçalves Rodrigues ◽  
Maria Helena Cosendey de Aquino ◽  
Márcio Roberto Silva ◽  
Letícia Caldas Mendonça ◽  
Juliana França Monteiro de Mendonça ◽  
...  

ABSTRACT: Bulk tank somatic cell counts (BTSCC) is widely used to monitore the mammary gland health at the herd and regional level. The BTSCC time series from specific regions or countries can be used to compare the mammary gland health and estimate the trend of subclinical mastitis at the regional level. Three time series of BTSCC from dairy herds located in the USA and the Southeastern Brazil were evaluated from 1995 to 2014. Descriptive statistics and a linear regression model were used to evaluate the data of the BTSCC time series. The mean of annual geometric mean of BTSCC (AGM) and the percentage of dairy herds with a BTSCC greater than 400,000 cells mL-1 (%>400) were significantly different (P<0.05) according to the countries and the times series. Linear regression model used for the USA time series was statistically significant for AGM and the %>400 (P<0.05). The first and second USA time series presented an increasing and decreasing trend for AGM and the %>400, respectively. The linear regression model for the Brazil time series was not significant (P>0.05) for both dependent variables (AGM and %>400). The Brazil time series showed no increasing or decreasing trend for the AGM and %>400. Consequently, approximately 40 to 50% of the dairy herds from southeastern Brazil will not achieve the regulatory limits for BTSCC over the next years.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 206-213 ◽  
Author(s):  
P Mayer ◽  
C Lam ◽  
H Obenaus ◽  
E Liehl ◽  
J Besemer

The in vivo efficacy of glycosylated and nonglycosylated recombinant human granulocyte macrophage colony-stimulating factor (rh GM-CSF) expressed in Chinese hamster ovary cells and Escherichia coli respectively was studied in rhesus monkeys following a daily subcutaneous (SC; three times) or intravenous (IV; over six hours) dose for seven consecutive days. The monkeys responded to the rh GM-CSF with a prompt (within 24 hours) rise in circulating white blood cells (WBCs). Thereafter the total cell counts increased steadily in a dose- dependent manner with repeated dosing to numbers six times over the pretreatment levels. Overall, granulocyte counts increased fivefold, lymphocytes twofold to fourfold, and monocytes threefold to fourfold. Platelets and erythrocytes were unaffected. Within 1 week after the end of treatment the leukocytosis had disappeared. Of the two routes of treatment, SC (three times daily)-administered rh GM-CSF was more effective than the same dose given by a six-hour IV infusion. In addition to inducing leukocytosis, parenterally administered rh GM-CSF primed mature circulating granulocytes for enhanced oxidative metabolism and killing of an E coli strain. These results show that exogenously administered glycosylated or nonglycosylated rh GM-CSF is both an effective stimulator of leukocytosis and a potent activator of the phagocytic function of mature granulocytes in monkeys.


Sign in / Sign up

Export Citation Format

Share Document