scholarly journals Live Attenuated Infectious Bronchitis Virus Vaccines in Poultry: Modifying Local Viral Populations Dynamics

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2058
Author(s):  
Miguel Guzmán ◽  
Héctor Hidalgo

Infectious bronchitis virus (IBV) remains one of the most important diseases impacting poultry today. Its high adaptive capacity, attributable to the high mutation rate associated with its ssRNA(+), is one of its more important features. While biosecurity procedures and barriers have been shown to be preponderant factors in minimizing the impact of infectious bronchitis (IB), the environment and procedures associated with intensive poultry systems greatly influence the viral population dynamics. High-density poultry flocks facilitate recombination between different viruses, and even with live attenuated vaccines, which can change the dominant circulating field strains. Furthermore, the remaining issue of reversion to virulence gives rise to significant problems when vaccinal strains are introduced in places where their pathogenic variants have not been reported. Under specific conditions, live attenuated vaccines could also change the frequency of circulating viruses and enable replacement between different field strains. In summary, under a comprehensive approach, while vaccination is one of the most essential tools for controlling IB, the veterinarians, farmers, and official services role in its usage is central to minimizing alteration in a malleable viral population. Otherwise, vaccination is ultimately counterproductive.

2006 ◽  
Vol 80 (8) ◽  
pp. 4147-4156 ◽  
Author(s):  
Brian Dove ◽  
Gavin Brooks ◽  
Katrina Bicknell ◽  
Torsten Wurm ◽  
Julian A. Hiscox

ABSTRACT In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G1 regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G2/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the G0 phase or asynchronously replicating cells. Our data suggested that IBV induces a G2/M phase arrest in infected cells to promote favorable conditions for viral replication.


Author(s):  
Sachin Subedi ◽  
Sulove Koirala ◽  
Lilong Chai

Coronaviruses are positive sense RNA virus belonging to the Coronaviridae family, which are further subdivided into four genera: Alpha, Beta, Gamma, and Delta Coronaviruses. Infectious bronchitis virus and SARS-CoV belong to Beta Coronaviridae family. Infectious bronchitis virus causes respiratory and nephritic signs that includes tracheal rales, urate crystals, lethargy and nasal discharge. In livestock and pets, the Coronavirus infection causes mostly gastrointestinal lesions, which may be prevented through vaccination and biosecurity. Recent infections of SARS-CoV-2 (also known as COVID-19) on farm and pet animals were summarized in this study. Besides, zoo animals were reported with infections in some countries/regions. Although the damage of COVID-19 has not been reported as serious as highly pathogenic avian influenza (HPAI) and African Swine Fever (ASF) on farm animals so far, the transmission mechanism of COVID-19 among group animals/farms and its long-term impacts are still not clear. The impact of Coronavirus on animals and potential prevention strategies, such as vaccine development and farm biosecurity measures, were discussed. Prior to the development of the effective vaccine, the biosecurity measures (e.g., conventional disinfection strategies and innovated technologies) may play roles in preventing potential spread of diseases/viruses.


2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Michael S. Oade ◽  
Sarah Keep ◽  
Graham L. Freimanis ◽  
Richard J. Orton ◽  
Paul Britton ◽  
...  

ABSTRACT The gammacoronavirus infectious bronchitis virus (IBV) causes an acute, highly contagious respiratory disease of poultry. Live attenuated vaccines are traditionally generated by serial passage of a virulent strain in embryonated chicken eggs; however, the molecular mechanism of attenuation is unknown. M41-CK, a virulent lab-adapted strain of IBV, was egg passaged over 100 times in four parallel independent replicates. All four final egg-passaged viruses were attenuated in vivo and exhibited similar growth phenotypes in adult chicken kidney cells and ex vivo tracheal organ cultures. The virus populations were sequenced by 454 pyrosequencing at the end of passaging, and the results showed that overall sequence diversity in the IBV population increased but the four replicates only had between 11 and 17 consensus-level single nucleotide polymorphisms (SNPs). Although hot spots of variation were identified in spike and nucleocapsid structural proteins as well as the 3ʹ untranslated region, each attenuated virus possessed a different pattern of genomic variation. Overall, only a small number of consensus-level SNPs were acquired during egg passage, leaving a potentially short route back to virulence. These results highlight the unpredictable nature of attenuation by serial egg passage and the need to develop mechanisms to rationally attenuate IBV for the next generation of effective vaccines. IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines are currently developed by serial passage of a virulent strain on embryonated hen’s eggs until attenuation; however, little is known about the evolution of the viral population during the process of attenuation. High-throughput sequencing of four replicates of a serially egg-passaged IBV revealed a different pattern of genomic variation in each attenuated replicate and few consensus-level SNPs. This raises concerns that only a small number of genomic mutations are required to revert to a virulent phenotype, which may result in vaccine breakdown in the field. The observed hot spots of variation in the attenuated viruses have the potential to be used in the rational attenuation of virulent IBV for next-generation vaccine design.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Janet To ◽  
Wahyu Surya ◽  
To Sing Fung ◽  
Yan Li ◽  
Carmina Verdià-Bàguena ◽  
...  

ABSTRACT It has been shown previously in the severe acute respiratory syndrome coronavirus (SARS-CoV) that two point mutations, N15A and V25F, in the transmembrane domain (TMD) of the envelope (E) protein abolished channel activity and led to in vivo attenuation. Pathogenicity was recovered in mutants that also regained E protein channel activity. In particular, V25F was rapidly compensated by changes at multiple V25F-facing TMD residues located on a neighboring monomer, consistent with a recovery of oligomerization. Here, we show using infected cells that the same mutations, T16A and A26F, in the gamma-CoV infectious bronchitis virus (IBV) lead to, in principle, similar results. However, IBV E A26F did not abolish oligomer formation and was compensated by mutations at N- and C-terminal extramembrane domains (EMDs). The C-terminal EMD mutations clustered along an insertion sequence specific to gamma-CoVs. Nuclear magnetic resonance data are consistent with the presence of only one TMD in IBV E, suggesting that recovery of channel activity and fitness in these IBV E revertant mutants is through an allosteric interaction between EMDs and TMD. The present results are important for the development of IBV live attenuated vaccines when channel-inactivating mutations are introduced in the E protein. IMPORTANCE The ion channel activity of SARS-CoV E protein is a determinant of virulence, and abolishment of channel activity leads to viral attenuation. E deletion may be a strategy for generating live attenuated vaccines but can trigger undesirable compensatory mechanisms through modifications of other viral proteins to regain virulence. Therefore, a more suitable approach may be to introduce small but critical attenuating mutations. For this, the stability of attenuating mutations should be examined to understand the mechanisms of reversion. Here, we show that channel-inactivating mutations of the avian infectious bronchitis virus E protein introduced in a recombinant virus system are deficient in viral release and fitness and that revertant mutations also restored channel activity. Unexpectedly, most of the revertant mutations appeared at extramembrane domains, particularly along an insertion specific for gammacoronaviruses. Our structural data propose a single transmembrane domain in IBV E, suggesting an allosteric interaction between extramembrane and transmembrane domains.


2020 ◽  
Vol 51 (6) ◽  
pp. 621-626
Author(s):  
Lana Ljuma Skupnjak ◽  
Anto Vrdoljak ◽  
Nikol Očuršćak

The most effective means of controlling infectious bronchitis in poultry is by vaccination. Live attenuated vaccines based on the H120 strain (Mass serotype) are the most commonly used vaccines. Since vaccination is often performed in the hatchery, long duration of immunity is preferred. Avishield IB H120, a live attenuated vaccine based on the strain H120 is registered across the European Union and other countries, and has a declared immunity period of up to 5 weeks after vaccination. This study presents the results of an additional survey demonstrating protection against challenge with the IBV strain M41 up to 8 weeks after a single vaccination with Avishield IB H120. Seven weeks after vaccination, 94% of chickens vaccinated by spray were protected against the challenge. Eight weeks after vaccination, 80% of spray vaccinated chickens and 75% of orally vaccinated chickens were still protected against the challenge with virulent IBV.


Author(s):  
Sachin Subedi ◽  
Sulove Koirala ◽  
Lilong Chai

Coronaviruses are positive sense RNA virus belonging to the Coronaviridae family, which are further subdivided into four genera: Alpha, Beta, Gamma, and Delta Coronaviruses. Infectious bronchitis virus and SARS-CoV belong to Beta Coronaviridae family. Infectious bronchitis virus causes respiratory and nephritic signs that includes tracheal rales, urate crystals, lethargy and nasal discharge. In livestock and pets, the Coronavirus infection causes mostly gastrointestinal lesions, which may be prevented through vaccination and biosecurity. Recent infections of SARS-CoV-2 (also known as COVID-19) on farm, pet, and zoo animals were summarized in this study. Although the damage of COVID-19 has not been reported in commercial livestock and poultry, the transmission mechanism of COVID-19 among group animals and farms are not still clear. The impact of Coronavirus on animals and potential prevention strategies, such as vaccine development and farm biosecurity measures, were discussed. Before the right vaccine is successfully marketed, biosecurity measures (e.g., conventional disinfection strategies and innovated technologies) may play roles in preventing potential airborne transmission.


2017 ◽  
Vol 7 (4) ◽  
pp. 65-72
Author(s):  
V. N. Shmagol' ◽  
V. L. Yarysh ◽  
S. P. Ivanov ◽  
V. I. Maltsev

<p>The long-term population dynamics of the red deer (<em>Cervus elaphus</em> L.) and European roe deer (<em>Capreolus</em> <em>capreolus</em> L.) at the mountain and forest zone of Crimea during 1980-2017 is presented. Fluctuations in numbers of both species are cyclical and partly synchronous. Period of oscillations in the population of red deer is about 25 years, the average duration of the oscillation period of number of roe deer is 12.3 years. During the fluctuations in the number the increasing and fall in population number of the red deer had been as 26-47 %, and roe deer – as 22-34 %. Basing on the dada obtained we have assumed that together with large-scale cycles of fluctuations in population number of both red deer and roe deer the short cycles of fluctuations in the number of these species with period from 3.5 to 7.5 years take place. Significant differences of the parameters of cyclical fluctuations in the number of roe deer at some sites of the Mountainous Crimea: breaches of synchronicity, as well as significant differences in the duration of cycles are revealed. The greatest deviations from the average values of parameters of long-term dynamics of the number of roe deer in Crimea are noted for groups of this species at two protected areas. At the Crimean Nature Reserve the cycle time of fluctuations of the numbers of roe deer was 18 years. At the Karadag Nature Reserve since 1976 we can see an exponential growth in number of roe deer that is continued up to the present time. By 2016 the number of roe deer reached 750 individuals at a density of 437 animals per 1 thousand ha. Peculiarity of dynamics of number of roe deer at some sites proves the existence in the mountain forest of Crimea several relatively isolated groups of deer. We assumed that "island" location of the Crimean populations of red deer and European roe deer, their relatively little number and influence of permanent extreme factors of both natural and anthropogenic origination have contributed to a mechanism of survival of these populations. The elements of such a mechanism include the following features of long-term dynamics of the population: the reduction in the period of cyclic population fluctuations, while maintaining their amplitude and the appearance of additional small cycles, providing more flexible response of the population to the impact of both negative and positive environmental factors. From the totality of the weather conditions for the Crimean population of roe deer the recurring periods of increases and downs in the annual precipitation amount may have relevance. There was a trend of increase in the roe deer population during periods of increasing annual precipitation.</p>


Sign in / Sign up

Export Citation Format

Share Document