scholarly journals D-Lactate Increases Cytokine Production in Bovine Fibroblast-Like Synoviocytes via MCT1 Uptake and the MAPK, PI3K/Akt, and NFκB Pathways

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2105
Author(s):  
Carolina Manosalva ◽  
John Quiroga ◽  
Stefanie Teuber ◽  
Sebastián Cárdenas ◽  
María Daniella Carretta ◽  
...  

Acute ruminal acidosis (ARA) is caused by the excessive intake of highly fermentable carbohydrates, followed by the massive production of D-lactate and the appearance of neutrophilic aseptic polysynovitis. Bovines with ARA develop different lesions, such as ruminitis, polioencephalomalacia (calves), liver abscess and lameness. Lameness in cattle with ARA is closely associated with the presence of laminitis and polysynovitis. However, despite decades of research in bovine lameness as consequence of ruminal acidosis, the aetiology and pathogenesis remain unclear. Fibroblast-like synoviocytes (FLSs) are components of synovial tissue, and under pathological conditions, FLSs increase cytokine production, aggravating inflammatory responses. We hypothesized that D-lactate could induce cytokine production in bovine FLSs. Analysis by qRT-PCR and ELISA revealed that D-lactate, but not L-lactate, increased the expression of IL-6 and IL-8 in a monocarboxylate transporter-1-dependent manner. In addition, we observed that the inhibition of the p38, ERK1/2, PI3K/Akt, and NF-κB pathways reduced the production of IL-8 and IL-6. In conclusion, our results suggest that D-lactate induces an inflammatory response; this study contributes to the literature by revealing a potential key role of D-lactate in the polysynovitis of cattle with ARA.

Author(s):  
Tatsuro Saruga ◽  
Tadaatsu Imaizumi ◽  
Shogo Kawaguchi ◽  
Kazuhiko Seya ◽  
Tomoh Matsumiya ◽  
...  

AbstractC-X-C motif chemokine 10 (CXCL10) is an inflammatory chemokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Melanoma differentiation-associated gene 5 (MDA5) is an RNA helicase that plays a role in innate immune and inflammatory reactions. The details of the regulatory mechanisms of CXCL10 production and the precise role of MDA5 in RA synovitis have not been fully elucidated. The aim of this study was to examine the role of MDA5 in regulating CXCL10 expression in cultured human rheumatoid fibroblast-like synoviocytes (RFLS). RFLS was stimulated with Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA mimetic. Expression of interferon beta (IFN-β), MDA5, and CXCL10 was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay. A neutralizing antibody of IFN-β and siRNA-mediated MDA5 knockdown were used to determine the role of these molecules in regulating CXCL10 expression downstream of TLR3 signaling in RFLS. Poly I:C induced IFN-β, MDA5, and CXCL10 expression in a concentration- and time-dependent manner. IFN-β neutralizing antibody suppressed the expression of MDA5 and CXCL10, and knockdown of MDA5 decreased a part of CXCL10 expression (p < 0.001). The TLR3/IFN-β/CXCL10 axis may play a crucial role in the inflammatory responses in RA synovium, and MDA5 may be partially involved in this axis.


2021 ◽  
pp. 153537022199515
Author(s):  
Lídia Perea ◽  
Lorena Rodríguez-Rubio ◽  
Juan C Nieto ◽  
Carlos Zamora ◽  
Elisabet Cantó ◽  
...  

Bacteriophages are present in fluids from cirrhosis patients. However, their effect on the immune response is unknown. In this work, we explore the role of phages in the phenotype, function, and cytokine production of monocytes. We stimulated healthy monocytes with five different butanol-purified phage suspensions infective for Gram-negative and Gram-positive bacteria. We studied the expression of the monocyte markers involved in lipopolysaccharide recognition (LPS; CD14), antigen presentation (HLA-DR) and co-stimulation (CD86), and the concentration of induced cytokines (TNF-α, IFN-α, and IL-10) by phages. To confirm the direct role of phages without the interference of contaminating soluble LPS in phage suspensions, polymyxin B was added to the cell cultures. Phagocytosis experiments were assessed by flow cytometry using labeled phage suspensions. We observed that butanol-purified phages reduced the surface levels of CD14 and CD86 in monocytes and increased the secreted levels of TNF-α and IL-10 compared with the control sample containing only butanol buffer. All phage suspensions showed downregulation of HLA-DR expression but only Staphylococcus aureus phage contaminated with Escherichia coli reached statistical significance. The addition of polymyxin B did not restore the monocytic response induced by phages, suggesting that the effect was not caused by the presence of LPS. Monocytes were able to phagocyte phages in a dose- and time-dependent manner. To conclude, the phagocytosis of butanol-purified phages altered the phenotype and cytokine production of monocytes suggesting they become tolerogenic.


2009 ◽  
Vol 77 (9) ◽  
pp. 3686-3695 ◽  
Author(s):  
Hany M. Ibrahim ◽  
Hiroshi Bannai ◽  
Xuenan Xuan ◽  
Yoshifumi Nishikawa

ABSTRACT Toxoplasma gondii modulates pro- and anti-inflammatory responses to regulate parasite multiplication and host survival. Pressure from the immune response causes the conversion of tachyzoites into slowly dividing bradyzoites. The regulatory mechanisms involved in this switch are poorly understood. The aim of this study was to investigate the immunomodulatory role of T. gondii cyclophilin 18 (TgCyp18) in macrophages and the consequences of the cellular responses on the conversion machinery. Recombinant TgCyp18 induced the production of nitric oxide (NO), interleukin-12 (IL-12), and tumor necrosis factor alpha through its binding with cysteine-cysteine chemokine receptor 5 (CCR5) and the production of gamma interferon and IL-6 in a CCR5-independent manner. Interestingly, the treatment of macrophages with TgCyp18 resulted in the inhibition of parasite growth and an enhancement of the conversion into bradyzoites via NO in a CCR5-dependent manner. In conclusion, T. gondii possesses sophisticated mechanisms to manipulate host cell responses in a TgCyp18-mediated process.


2000 ◽  
Vol 279 (4) ◽  
pp. G775-G780 ◽  
Author(s):  
Christos Hadjiagapiou ◽  
Larry Schmidt ◽  
Pradeep K. Dudeja ◽  
Thomas J. Layden ◽  
Krishnamurthy Ramaswamy

The short-chain fatty acid butyrate was readily taken up by Caco-2 cells. Transport exhibited saturation kinetics, was enhanced by low extracellular pH, and was Na+independent. Butyrate uptake was unaffected by DIDS; however, α-cyano-4-hydroxycinnamate and the butyrate analogs propionate and l-lactate significantly inhibited uptake. These results suggest that butyrate transport by Caco-2 cells is mediated by a transporter belonging to the monocarboxylate transporter family. We identified five isoforms of this transporter, MCT1, MCT3, MCT4, MCT5, and MCT6, in Caco-2 cells by PCR, and MCT1 was found to be the most abundant isoform by RNase protection assay. Transient transfection of MCT1, in the antisense orientation, resulted in significant inhibition of butyrate uptake. The cells fully recovered from this inhibition by 5 days after transfection. In conclusion, our data showed that the MCT1 transporter may play a major role in the transport of butyrate into Caco-2 cells.


2009 ◽  
Vol 297 (5) ◽  
pp. G878-G885 ◽  
Author(s):  
Seema Saksena ◽  
Saritha Theegala ◽  
Nikhil Bansal ◽  
Ravinder K. Gill ◽  
Sangeeta Tyagi ◽  
...  

Somatostatin (SST), an important neuropeptide of the gastrointestinal tract has been shown to stimulate sodium chloride absorption and inhibit chloride secretion in the intestine. However, the effects of SST on luminal butyrate absorption in the human intestine have not been investigated. Earlier studies from our group and others have shown that monocarboxylate transporter (MCT1) plays an important role in the transport of butyrate in the human intestine. The present studies were undertaken to examine the effects of SST on butyrate uptake utilizing postconfluent human intestinal epithelial Caco2 cells. Apical SST treatment of Caco-2 cells for 30–60 min significantly increased butyrate uptake in a dose-dependent manner with maximal increase at 50 nM (∼60%, P < 0.05). SST receptor 2 agonist, seglitide, mimicked the effects of SST on butyrate uptake. SST-mediated stimulation of butyrate uptake involved the p38 MAP kinase-dependent pathway. Kinetic studies demonstrated that SST increased the maximal velocity ( Vmax) of the transporter by approximately twofold without any change in apparent Michaelis-Menten constant ( Km). The higher butyrate uptake in response to SST was associated with an increase in the apical membrane levels of MCT1 protein parallel to a decrease in the intracellular MCT1 pool. MCT1 has been shown to interact specifically with CD147 glycoprotein/chaperone to facilitate proper expression and function of MCT1 at the cell surface. SST significantly enhanced the membrane levels of CD147 as well as its association with MCT1. This association was completely abolished by the specific p38 MAP kinase inhibitor, SB203580. Our findings demonstrate that increased MCT1 association with CD147 at the apical membrane in response to SST is p38 MAP kinase dependent and underlies the stimulatory effects of SST on butyrate uptake.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-Bo Luo ◽  
Jian-Cheng Xi ◽  
Zhen Liu ◽  
Yu Long ◽  
Li-tao Li ◽  
...  

Rheumatoid arthritis (RA) is a worldwide chronic autoimmune inflammatory disease which is affecting approximately 1% of the total population. It is characterized by abnormal proliferation of fibroblast-like synoviocytes (FLS) and increased production of proinflammatory cytokines. In the current study, we were aiming to investigate the role of ubiquitin-specific protease 5 (USP5) in the inflammatory process in RA-FLS. Expression of USP5 was found upregulated in RA-FLS compared with that in osteoarthritis- (OA-) FLS, and IL-1β stimulation increased USP5 expression in a time-dependent manner. Furthermore, we found that USP5 overexpression significantly aggravated proinflammatory cytokine production and related nuclear factor κB (NF-κB) signaling activation. Consistently, silencing of USP5 decreased the release of cytokines and inhibited the activation of NF-κB. In addition, USP5 was found to interact with tumor necrosis factor receptor-associated factor 6 (TRAF6) and remove its K48-linked polyubiquitination chains therefore stabilizing TRAF6. Our data showed that a USP5-positive cell regulates inflammatory processes in RA-FLS and suggested USP5 as a potential target for RA treatment.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 2516-2516 ◽  
Author(s):  
Sarah E. R. Halford ◽  
Paul Jones ◽  
Steve Wedge ◽  
Sandra Hirschberg ◽  
Sidath Katugampola ◽  
...  

2516 Background: A key metabolic alteration in tumour cells is an increased dependency on the glycolysis, resulting in the production of lactate, which is transported out of cells by MCTs. Inhibition of MCT-1 leads to a profound inhibition of cancer cell growth in preclinical models. AZD3965 is a FIC inhibitor of MCT-1, and we report results from the phase I study of this agent. Methods: Patients with advanced solid tumours were treated with oral (po) AZD3965 at total daily doses of 5-30mg given once (od) and twice daily (bd). Exclusion criteria included a history of retinal or cardiac disease due to preclinical toxicology findings in the eye and heart (which express MCT-1). The primary objectives were to determine the safety, dose limiting toxicities (DLT) and maximum tolerated dose (MTD) of AZD3965. Intensive pharmacokinetic (PK) profiling was performed with subsequent modelling for receptor occupancy. Pharmacodynamic profiling included imaging to detect pH changes and tumour glucose uptake; plasma/urine metabolomics and MCT-1 and MCT-4 tumour expression by immunohistochemistry. Results: 35 patients (20M:15F median age 65) were treated at dose levels 5, 10, 20, and 30mg od and 15 and 10mg bd. AZD3965 was generally well tolerated with nausea and fatigue (CTCAE Gr1-2) the most commonly reported side effects. A single DLT of cardiac troponin rise was observed at 20mg od. Asymptomatic, reversible retinal ERG changes were observed in all but the lowest dose levels, with DLTs observed at doses above 20mg od. PK data indicate exposures in the preclinical efficacy range. Metabolomic changes in urinary lactate and urinary ketones correlate with on-target activity. The increase in urinary ketones is likely to be attributable to the role of MCT1 in physiological ketone transport. Conclusions: The MCT1 inhibitor AZD3965 can be administered to patients at doses which engage the drug target, with a MTD of 20mg od po. DLTs seen were primarily dose dependent, asymptomatic and reversible changes in retinal function, which were an expected on-target effect. Investigation of the activity of AZD3965 is ongoing in tumours known to express MCT1. Clinical trial information: NCT01791595.


1997 ◽  
Vol 64 (2) ◽  
pp. 281-288 ◽  
Author(s):  
CHUN W. WONG ◽  
AI H. LIU ◽  
GEOFFREY O. REGESTER ◽  
GEOFFREY L. FRANCIS ◽  
DENNIS L. WATSON

The effects of ruminant whey and its purified fractions on neutrophil chemotaxis and superoxide production in sheep were studied. Both colostral whey and milk whey were found to inhibit chemotaxis regardless of whether they were autologous or homologous, but the inhibitory effects were abolished by washing neutrophils with culture medium before their use in the chemotaxis assay. Colostral whey and milk whey also inhibited the chemotactic activity of zymosan-activated serum. Whey fractions of various degrees of purity such as lactoferrin, lacto-peroxidase, lactoferrin–lactoperoxidase, α-lactalbumin, bovine serum albumin and whey protein concentrate were then studied. While none of these proteins showed any effects on chemotaxis, lactoferrin–lactoperoxidase and whey protein concentrate were found to have an enhancing effect on superoxide production in a dose-dependent manner. Our results provide information on the modulatory role of ruminant milk proteins in inflammatory responses and warrant future investigation.


2003 ◽  
Vol 185 (23) ◽  
pp. 6950-6967 ◽  
Author(s):  
Kristin Ehrbar ◽  
Andrea Friebel ◽  
Samuel I. Miller ◽  
Wolf-Dietrich Hardt

ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.


2020 ◽  
pp. 1-8
Author(s):  
Ahmad Zavaran Hosseini ◽  
Ahmad Ali Noorbala ◽  
Ahmad Zavaran Hosseini ◽  
Esfandiar Azizi ◽  
Saiyad Bastaminejad ◽  
...  

Background: It has been suggested that the function of myeloid immune cells, especially macrophages in schizophrenia patients (SCZ), is impaired. Considering the role of macrophages in induction of inflammatory responses, the purpose of this study is to examine the response of monocyte-derived macrophages (MDM) of schizophrenia patients to Toxoplasma gondii (T. gondii) challenge. Materials and Methods: MDMs were generated from 20 SCZ and 10 healthy controls (HC). The cells were exposed to T. gondii. The Cytokine (IL-10, IL-12, IL-6, and TNF-α) and nitric oxide (NO) productions were measured. The expression of miR146a and miR155 was examined using qPCR. Results: The level of NO was significantly higher in the supernatant of MDMs of SCZ compared with the HC (P≤0.05) in response to T. gondii. There was no difference in cytokine (IL-10, IL-12, IL-6, and TNF-α) production of SCZ compared to the controls. The effect of miR-155/ miR-146a on inflammatory cytokine production was confirmed using anti-miRNAs. There were no significant effect in miR-155/ miR-146a expression of macrophages of schizophrenia patients to T. gondii compared to control. Conclusion: In this study, although the cytokine response and the amount of miR-155/ miR-146a expression of macrophages to T. gondii was not significantly different between the schizophrenia patients and the healthy subjects, the significant differences in the production of nitric oxide strengthen the hypothesis of the functional failure of these cells.


Sign in / Sign up

Export Citation Format

Share Document