scholarly journals Milk Composition of Free-Ranging Impala (Aepyceros melampus) and Tsessebe (Damaliscus lunatus lunatus), and Comparison with Other African Bovidae

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 516
Author(s):  
Gernot Osthoff ◽  
Arnold Hugo ◽  
Moses Madende ◽  
Lauren Schmidt ◽  
Sibusiso Kobeni ◽  
...  

The major nutrient and fatty acid composition of the milk of impala and tsessebe is reported and compared with other Bovidae and species. The proximate composition of impala milk was 5.56 ± 1.96% fat, 6.60 ± 0.51% protein, and 4.36 ± 0.94% lactose, and that of tsessebe milk was 8.44 ± 3.19%, 5.15 ± 0.49%, and 6.10 ± 3.85%, respectively. The high protein content of impala milk accounted for 42% of gross energy, which is typical for African Bovids that use a “hider” postnatal care system, compared to the 25% of the tsessebe, a “follower”. Electrophoresis showed that the molecular size and surface charge of the tsessebe caseins resembled that of other Alcelaphinae members, while that of the impala resembled that of Hippotraginae. The milk composition of these two species was compared by statistical methods with 13 other species representing eight suborders, families, or subfamilies of African Artiodactyla. This showed that the tsessebe milk resembled that of four other species of the Alcelaphinae sub-family and that the milk of this sub-family differs from other Artiodactyla by its specific margins of nutrient contents and milk fat with a high content of medium-length fatty acids (C8–C12) above 17% of the total fatty acids.

2004 ◽  
Vol 91 (2) ◽  
pp. 271-277 ◽  
Author(s):  
Soressa M. Kitessa ◽  
Suresh K. Gulati ◽  
Gillian C. Simos ◽  
John R. Ashes ◽  
Trevor W. Scott ◽  
...  

The present study was conducted to determine the pattern of incorporation of dietary EPA and docosahexaenoic acid (DHA) into milk, and to evaluate consequent changes in milk fat composition and sensory characteristics. Fourteen multiparous cows in early lactation were divided into two groups and were offered supplements for 10 d. While individual stalls after each morning milking, one group was offered a mixture of rumen-protected tuna oil (RPTO)–soyabean supplement (2 kg; 30:70, w/w; +RPTO) and the second group was offered the basal ration without RPTO (−RPTO). Both groups grazed together on a spring pasture after supplementation. Feeding supplemental RPTO increased the concentrations of EPA and DHA in milk fat from undetectable levels in −RPTO cows to 6·9 and 10·1 g/kg milk fat respectively. Total n-3 PUFA concentration in milk fat was increased three- to fourfold by tuna-oil supplementation (8·4 to 32·0 g/kg milk fat). There were no significant effects on milk production (35·4 v. 33·9 l/d), milk protein (28·2 v. 30·1 g/kg) or milk fat (36·2 v. 40·4 g/kg for −RPTO and +RPTO respectively). The concentration of total saturated fatty acids in milk fat was significantly reduced (568 v. 520 g/kg total fatty acids) and there was a 17 % reduction in the atherosclerotic index of milk after tuna-oil supplementation. Untrained consumer panellists (n 61) rated milk from both groups of cows similarly for taste and smell. We conclude that it is possible to enrich milk with n-3 PUFA without deleterious effects on yield, milk composition or sensory characteristics.


2003 ◽  
Vol 77 (1) ◽  
pp. 165-179 ◽  
Author(s):  
K. J. Shingfield ◽  
S. Ahvenjärvi ◽  
V. Toivonen ◽  
A. Ärölä ◽  
K. V. V. Nurmela ◽  
...  

AbstractMechanisms underlying milk fat conjugated linoleic acid (CLA) responses to supplements of fish oil were investigated using five lactating cows each fitted with a rumen cannula in a simple experiment consisting of two consecutive 14-day experimental periods. During the first period cows were offered 18 kg dry matter (DM) per day of a basal (B) diet formulated from grass silage and a cereal based-concentrate (0·6 : 0·4; forage : concentrate ratio, on a DM basis) followed by the same diet supplemented with 250 g fish oil per day (FO) in the second period. The flow of non-esterified fatty acids leaving the rumen was measured using the omasal sampling technique in combination with a triple indigestible marker method based on Li-Co-EDTA, Yb-acetate and Cr-mordanted straw. Fish oil decreased DM intake and milk yield, but had no effect on milk constituent content. Milk fat trans-11 C18:1, total trans-C18 : 1, cis-9 trans-11 CLA, total CLA, C18 : 2(n-6) and total C18 : 2content were increased in response to fish oil from 1·80, 4·51, 0·39, 0·56, 0·90 and 1·41 to 9·39, 14·39, 1·66, 1·85, 1·25 and 4·00 g/100 g total fatty acids, respectively. Increases in the cis-9, trans-11 isomer accounted for proportionately 0·89 of the CLA response to fish oil. Furthermore, fish oil decreased the flow of C18 : 0(283 and 47 g/day for B and FO, respectively) and increased that of trans-C18 : 1fatty acids entering the omasal canal (38 and 182 g/day). Omasal flows of trans-C18 : 1acids with double bonds in positions from delta-4 to -15 inclusive were enhanced, but the effects were isomer dependent and primarily associated with an increase in trans-11 C18 : 1 leaving the rumen (17·1 and 121·1 g/day for B and FO, respectively). Fish oil had no effect on total (4·36 and 3·50 g/day) or cis-9, trans-11 CLA (2·86 and 2·08 g/day) entering the omasal canal. Flows of cis-9, trans-11 CLA were lower than the secretion of this isomer in milk. Comparison with the transfer of the trans-9, trans-11 isomer synthesized in the rumen suggested that proportionately 0·66 and 0·97 of cis-9, trans-11 CLA was derived from endogenous conversion of trans-11 C18 : 1in the mammary gland for B and FO, respectively. It is concluded that fish oil enhances milk fat cis-9, trans-11 CLA content in response to increased supply of trans-11 C18:1that arises from an inhibition of trans-C18 : 1reduction in the rumen.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1379
Author(s):  
Robert Kupczyński ◽  
Antoni Szumny ◽  
Katarzyna Wujcikowska ◽  
Natalia Pachura

The aim of this paper is to review and systematize the current state of knowledge on glycol metabolism in cattle. Glycerol, derived from biodiesel production, must be purified in order to be a useful product for feeding livestock. The use of glycerol in the feeding of ruminants can be justified for several reasons: (i) it is a source of energy in the ration, (ii) it is a glucogenic precursor, and (iii) it may have an effect on milk composition. The high energy value of glycerol provides the opportunity to use this raw material as a partial grain substitute in cattle feed rations. Dietary supplementation of glycerol is associated with increased propionate, butyrate, valerate, and isovalerate concentrations in the rumen. Glycerol can be used at up to 10%–15% of the dietary dry matter (DM) and is well-established as a treatment for ketosis in cows. Glycerol increases plasma glucose and may reduce non-esterified fatty acids and β-hydroxybutyrate levels. The use of glycerol does not have a clear effect on DM intake, milk yield, or milk composition. However, some authors have reported an increase in milk yield after glycerol supplementation associated with decreased milk fat concentration. It is also possible that the concentration in the milk of odd-chain fatty acids and cis-9, trans-11 conjugated linoleic acid may increase after glycerol application.


2012 ◽  
Vol 80 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Tasja Kälber ◽  
Michael Kreuzer ◽  
Florian Leiber

Fresh buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) had been shown to have the potential to improve certain milk quality traits when fed as forages to dairy cows. However, the process of ensiling might alter these properties. In the present study, two silages, prepared from mixtures of buckwheat or chicory and ryegrass, were compared with pure ryegrass silage (Lolium multiflorum) by feeding to 3 × 6 late-lactating cows. The dietary dry matter proportions realised for buckwheat and chicory were 0·46 and 0·34 accounting also for 2 kg/d of concentrate. Data and samples were collected from days 10 to 15 of treatment feeding. Buckwheat silage was richest in condensed tannins. Proportions of polyunsaturated fatty acids (PUFA) and α-linoleic acid in total fatty acids (FA) were highest in the ryegrass silage. Feed intake, milk yield and milk gross composition did not differ among the groups. Feeding buckwheat resulted in the highest milk fat concentrations (g/kg) of linoleic acid (15·7) and total PUFA (40·5; bothP < 0·05 compared with ryegrass). The concentration of α-linolenic acid in milk fat was similar across treatments, but its apparent recovery in milk relative to the amounts ingested was highest with buckwheat. The same was true for the occurrence of FA biohydrogenation products in milk relative to α-linolenic acid intake. Recovery of dietary linoleic acid in milk remained unaffected. Feeding buckwheat silage shortened rennet coagulation time by 26% and tended (P < 0·1) to increase curd firmness by 29%. In conclusion, particularly buckwheat silage seems to have a certain potential to modify the transfer of FA from feed to milk and to contribute to improved cheese-making properties.


2021 ◽  
Vol 19 (3) ◽  
pp. e0607
Author(s):  
Mojtaba Hadadi ◽  
Ali A. Alamouti ◽  
AliReza Alizadeh ◽  
Abdollah Mohammadi-Sangcheshmeh

Aim of study: To examine the effects of a biphasic schedule of feeding n-3 fatty acids on dairy cows.Area of the study: Isfahan, Iran.Materials and methods: 140 lactating Holstein cows were allotted at calving into two groups of 70 animals and received one of two dietary treatments: 1) saturated fatty acids (SFA, containing 80% palmitic acid) or 2) calcium salt of fish oil (CSFO, containing 16% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)), with an n-6/n-3 FA ratio of approximately 7 for SFA and 5 for CSFO treatments. The dietary supplements were fed to the respective groups at 240 g/head.day from 0 to 21 days in milk, and 120 g/head.day from 22 to 150 days in milk. Milk yield was recorded biweekly and milk composition was evaluated monthly. The concentration of FA in the milk and blood was determined on d-90 of the experiment in 10 cows randomly selected from each group. Reproductive indices were recorded until d-150.Main results: The CSFO supplementation did not affect average milk yield, milk composition or milk somatic cell count (SCC); however, in some weeks it increased milk production and decreased milk SCC (p<0.05). Plasma concentrations of palmitic acid and n-3 FA as well as milk fat concentration of EPA and DHA increased in the CSFO-fed cows (p<0.05). Feeding the CSFO decreased open days (100 vs 119 days, p<0.05), service per conception and all service conception rates (p<0.05).Research highlights: The implementation of a two-stage feeding program of n-3 FA improved reproductive variables and reduced milk SCC in dairy cows.


2011 ◽  
Vol 56 (No. 4) ◽  
pp. 181-191 ◽  
Author(s):  
X.J. Dai ◽  
C. Wang ◽  
Q. Zhu

The objective of the study was to investigate the effects of supplementing different plant oils to the basal diet on milk yield and milk composition in mid-lactating dairy cows. Forty Chinese Holstein dairy cows averaging 120 days in milk (DIM) at the start of the experiment (body weight = 580 &plusmn; 18.2 kg; milk yield = 33.0 &plusmn; 2.00 kg/day) were used in a completely randomized block design. The animals were assigned to four dietary treatments according to DIM and milk yield, and supplemented with no oil (control), 2% rapeseed oil (RSO), 2% peanut oil (PNO) and 2% sunflower seed oil (SFO). Milk yield and milk composition (fat, protein, and lactose) were measured. Dry matter intake was similar in all treatments. The supplementation of plant oil increased milk yield, with the highest milk yield in RSO group. Percentages of milk fat, lactose, solids-not-fat and SCC were not affected by treatments except for an increase in milk protein content in oil supplemented groups. The fatty acid (FA) profile of milk was altered by fat supplementation. Feeding plant oils reduced the proportion of both short-chain (C4:0 to C12:0) and medium-chain (C14:0 to C16:1) fatty acids, and increased the proportion of long-chain (&ge; C18:0) fatty acids in milk fat. The inclusion of vegetable oils increased the concentration of cis-9, trans-11 CLA. The cis-9, trans-11 CLA content in milk fat was higher from RSO to PNO and SFO was higher than the control. The TVA concentration was higher in the SFO diet, followed by PNO, RSO, and control diets. The results of this study indicated that linoleic acid was more effective in enhancing contents of TVA and CLA in milk fat than oleic acid. No significant effects of week and treatment by week interaction were found out in this study. Overall, feeding plant oils increased monounsaturated and polyunsaturated fatty acids and decreased saturated fatty acids in milk fat. In conclusion, dietary supplementation of RSO increases milk yield the most, while SFO enhances the cis-9, trans-11 CLA content in milk fat more effectively.


1997 ◽  
Vol 64 (2) ◽  
pp. 181-195 ◽  
Author(s):  
FRANCIS ENJALBERT ◽  
MARIE CLAUDE NICOT ◽  
CORINE BAYOURTHE ◽  
MICHELE VERNAY ◽  
RAYMOND MONCOULON

Dairy cows fitted with ruminal, duodenal and ileal cannulas were utilized to investigate the effects of feeding with Ca soaps (CaS) of palm fatty acids (FA) and rapeseed FA. Diets compared were control diet based on maize silage and concentrate, and two diets with 40 g CaS of palm oil FA or rapeseed oil FA/kg diet, replacing part of the concentrates of the control diet. Total digestibilities of dry matter, fibre and fat, and ruminal fermentation were not significantly altered by giving CaS; the extent of ruminal biohydrogenation of total unsaturated C18 FA was significantly reduced by both CaS diets. Apparent intestinal digestibility of FA was not different among diets, although the amount of FA absorbed with the CaS diets was twice that with the control diet. No difference among diets was observed for milk production, or fat and protein contents. Giving CaS diets decreased the proportions of 4[ratio ]0 to 14[ratio ]0 FA in milk fat, and increased cis-18[ratio ]1n−9, compared with control diet. The rapeseed diet lowered the content of 16[ratio ]0, and increased the contents of 18[ratio ]0 and trans-18[ratio ]1n−7. CaS diets did not result in a marked increase of polyunsaturated FA content in milk fat. Butter from cows fed on the CaS diets contained more liquid fat at 6 and 14°C than butter from the cows fed on the control diet. Incorporating CaS, particularly those from rapeseed, in dairy cows' diets increased C18 FA in milk and improved butter spreadability.


2002 ◽  
Vol 69 (3) ◽  
pp. 357-365 ◽  
Author(s):  
GEORGE PAPADOPOULOS ◽  
CHRISTOS GOULAS ◽  
ELENI APOSTOLAKI ◽  
RUBEN ABRIL

Thirty-two lactating Karagouniko ewes were allocated at random to four groups for 6 weeks, to examine the effect of four diets: C (control treatment, ration without algae); LA (ration with low level of algae); MA (ration with medium level of algae) and HA (ration with high level of algae); containing 0, 23·5, 47 and 94 g algae, respectively, on the enrichment of milk and dairy products. Addition of algae reduced (P<0·001) DM intake for treatments MA and HA. Milk yield did not differ between treatments but milk composition was significantly affected by dietary inclusion of algae. Milk fat content was significantly increased (P<0·001) for treatment HA whereas milk protein content was significantly increased (P<0·001) for all treatments containing algae. Milk from treatments LA, MA and HA was significantly enriched in the following PUFA: C20[ratio ]5 (n-3) (0·4–2·1%), C22[ratio ]5 (n-6) (0·8–4·1%), C22[ratio ]6 (n-3) (4·3–12·4%) (P<0·001) and C22[ratio ]5 (n-3) (2·1–3·1%) (P<0·05), which were not detected in control milk. Feta cheese and yogurts produced from the enriched milk had identical composition with the milk, and would be characterized as healthy foods. The ratio of n-6 to n-3 fatty acids was 2·5–4·5.


2019 ◽  
Vol 86 (1) ◽  
pp. 55-62
Author(s):  
Piotr Micek ◽  
Zygmunt M. Kowalski ◽  
Marek Sady ◽  
Jolanta Oprządek ◽  
Jacek Domagała ◽  
...  

AbstractThis research paper addresses the hypothesis that calcium salts combined with whole linseed and heat-treated rapeseed cake in one feed additive may efficiently stimulate the productivity of dairy cows and have a positive effect on the functional (health-promoting) properties of milk fat. The article proposes the composition of such an additive (EFA) and evaluates its nutritional effect in the diet of mid-lactation dairy cows. Forty multiparous Polish Holstein-Friesian (PHF) dairy cows were allocated to one of four treatments (10 cows/treatment) and fed a TMR diet without EFA or with EFA in the amount of 1, 2 or 3 kg/d per head for a 63-d-period. Individual intake of dry matter (DMI) and nutrients was determined, as was milk yield and composition, including fatty acid profile, fat soluble vitamins, cholesterol and phospholipids (PLs). Irrespective of the treatment group, cows fed diets with EFA had higher (P < 0.05) DMI, milk yield and milk vitamin D3 and K2 concentration but lower (P < 0.01) milk protein, fat and cholesterol contents. The additive did not affect the milk concentrations of β-carotene or vitamin A or E. The PLs content was correlated with fat concentration in the milk and decreased as the level of EFA in the diet increased. An increase in phosphatidylcholine in total PLs was accompanied by a reduction in the proportion of sphingomyelin (P < 0.05). The use of EFA increased the proportion of polyunsaturated fatty acids (PUFA) in the total fatty acids in the milk. The addition of EFA in the amount of 3 kg increased the proportion of PUFA by 77% (P < 0.05). In conclusion, the use of an energy-protein feed additive (EFA) increases feed intake and milk yield in cows and alters milk fat composition, improving its functional properties. Higher milk production compensates for the decrease in solids concentration in the milk, which has no effect on their daily yield.


1963 ◽  
Vol 30 (3) ◽  
pp. 339-343 ◽  
Author(s):  
J. M. deMan ◽  
J. P. Bowland

SummaryAs determined by gas-liquid chromatography, the mean fatty acid composition (weight percentages of total fatty acids) of milk fat from sows fed a diet to meet U.S. N.R.C. nutrient requirements was: oleic, 35·3; palmitic, 30·3; linoleic, 13·0; palmitoleic, 9·9; stearic, 4·0; myristic, 3·3; linolenic, 2·5; unidentified 0·7 and 0·5, presumably n-odd chain and branched fatty acids; lauric, 0·3; and capric, 0·2. The corresponding fatty acid composition of colostrum fat was: oleic, 41·7; palmitic, 22·5; linoleic, 20·9; palmitoleic, 5·0; stearic, 5·7; myristic, 1·4; linolenic, 2·4; and unidentified acids, 0·3 and 0·1. Dietary fat increased fat levels in the milk and influenced fatty acid composition of the milk fat. Backfat resembled colostrum fat more than milk fat.


Sign in / Sign up

Export Citation Format

Share Document