scholarly journals Genome-Wide Patterns of Homozygosity Reveal the Conservation Status in Five Italian Goat Populations

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1510
Author(s):  
Salvatore Mastrangelo ◽  
Rosalia Di Gerlando ◽  
Maria Teresa Sardina ◽  
Anna Maria Sutera ◽  
Angelo Moscarelli ◽  
...  

The application of genomic technologies has facilitated the assessment of genomic inbreeding based on single nucleotide polymorphisms (SNPs). In this study, we computed several runs of homozygosity (ROH) parameters to investigate the patterns of homozygosity using Illumina Goat SNP50 in five Italian local populations: Argentata dell’Etna (N = 48), Derivata di Siria (N = 32), Girgentana (N = 59), Maltese (N = 16) and Messinese (N = 22). The ROH results showed well-defined differences among the populations. A total of 3687 ROH segments >2 Mb were detected in the whole sample. The Argentata dell’Etna and Messinese were the populations with the lowest mean number of ROH and inbreeding coefficient values, which reflect admixture and gene flow. In the Girgentana, we identified an ROH pattern related with recent inbreeding that can endanger the viability of the breed due to reduced population size. The genomes of Derivata di Siria and Maltese breeds showed the presence of long ROH (>16 Mb) that could seriously impact the overall biological fitness of these breeds. Moreover, the results confirmed that ROH parameters are in agreement with the known demography of these populations and highlighted the different selection histories and breeding schemes of these goat populations. In the analysis of ROH islands, we detected harbored genes involved with important traits, such as for milk yield, reproduction, and immune response, and are consistent with the phenotypic traits of the studied goat populations. Finally, the results of this study can be used for implementing conservation programs for these local populations in order to avoid further loss of genetic diversity and to preserve the production and fitness traits. In view of this, the availability of genomic data is a fundamental resource.

2020 ◽  
Vol 42 (4) ◽  
pp. 393-403
Author(s):  
Donghe Li ◽  
Hahn Kang ◽  
Sanghun Lee ◽  
Sungho Won

Abstract Background There are many research studies have estimated the heritability of phenotypic traits, but few have considered longitudinal changes in several phenotypic traits together. Objective To evaluate the progressive effect of single nucleotide polymorphisms (SNPs) on prominent health-related phenotypic traits by determining SNP-based heritability ($$h_{snp}^{2}$$hsnp2) using longitudinal data. Methods Sixteen phenotypic traits associated with major health indices were observed biennially for 6843 individuals with 10-year follow-up in a Korean community-based cohort. Average SNP heritability and longitudinal changes in the total period were estimated using a two-stage model. Average and periodic differences for each subject were considered responses to estimate SNP heritability. Furthermore, a genome-wide association study (GWAS) was performed for significant SNPs. Results Each SNP heritability for the phenotypic mean of all sixteen traits through 6 periods (baseline and five follow-ups) were significant. Gradually, the forced vital capacity in one second (FEV1) reflected the only significant SNP heritability among longitudinal changes at a false discovery rate (FDR)-adjusted 0.05 significance level ($$h_{snp}^{2} = 0.171$$hsnp2=0.171, FDR = 0.0012). On estimating chromosomal heritability, chromosome 2 displayed the highest heritability upon periodic changes in FEV1. SNPs including rs2272402 and rs7209788 displayed a genome-wide significant association with longitudinal changes in FEV1 (P = 1.22 × 10−8 for rs2272402 and P = 3.36 × 10−7 for rs7209788). De novo variants including rs4922117 (near LPL, P = 2.13 × 10−15) of log-transformed high-density lipoprotein (HDL) ratios and rs2335418 (near HMGCR, P = 3.2 $$\times$$× 10−9) of low-density lipoprotein were detected on GWAS. Conclusion Significant genetic effects on longitudinal changes in FEV1 among the middle-aged general population and chromosome 2 account for most of the genetic variance.


2014 ◽  
Vol 17 (4) ◽  
Author(s):  
Raymond K. Walters ◽  
Charles Laurin ◽  
Gitta H. Lubke

Epistasis is a growing area of research in genome-wide studies, but the differences between alternative definitions of epistasis remain a source of confusion for many researchers. One problem is that models for epistasis are presented in a number of formats, some of which have difficult-to-interpret parameters. In addition, the relation between the different models is rarely explained. Existing software for testing epistatic interactions between single-nucleotide polymorphisms (SNPs) does not provide the flexibility to compare the available model parameterizations. For that reason we have developed an R package for investigating epistatic and penetrance models, EpiPen, to aid users who wish to easily compare, interpret, and utilize models for two-locus epistatic interactions. EpiPen facilitates research on SNP-SNP interactions by allowing the R user to easily convert between common parametric forms for two-locus interactions, generate data for simulation studies, and perform power analyses for the selected model with a continuous or dichotomous phenotype. The usefulness of the package for model interpretation and power analysis is illustrated using data on rheumatoid arthritis.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 363
Author(s):  
Sulochana K. Wasala ◽  
Dana K. Howe ◽  
Louise-Marie Dandurand ◽  
Inga A. Zasada ◽  
Dee R. Denver

Globodera pallida is among the most significant plant-parasitic nematodes worldwide, causing major damage to potato production. Since it was discovered in Idaho in 2006, eradication efforts have aimed to contain and eradicate G. pallida through phytosanitary action and soil fumigation. In this study, we investigated genome-wide patterns of G. pallida genetic variation across Idaho fields to evaluate whether the infestation resulted from a single or multiple introduction(s) and to investigate potential evolutionary responses since the time of infestation. A total of 53 G. pallida samples (~1,042,000 individuals) were collected and analyzed, representing five different fields in Idaho, a greenhouse population, and a field in Scotland that was used for external comparison. According to genome-wide allele frequency and fixation index (Fst) analyses, most of the genetic variation was shared among the G. pallida populations in Idaho fields pre-fumigation, indicating that the infestation likely resulted from a single introduction. Temporal patterns of genome-wide polymorphisms involving (1) pre-fumigation field samples collected in 2007 and 2014 and (2) pre- and post-fumigation samples revealed nucleotide variants (SNPs, single-nucleotide polymorphisms) with significantly differentiated allele frequencies indicating genetic differentiation. This study provides insights into the genetic origins and adaptive potential of G. pallida invading new environments.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1074
Author(s):  
Joanna Grzegorczyk ◽  
Artur Gurgul ◽  
Maria Oczkowicz ◽  
Tomasz Szmatoła ◽  
Agnieszka Fornal ◽  
...  

Poland is the largest European producer of goose, while goose breeding has become an essential and still increasing branch of the poultry industry. The most frequently bred goose is the White Kołuda® breed, constituting 95% of the country’s population, whereas geese of regional varieties are bred in smaller, conservation flocks. However, a goose’s genetic diversity is inaccurately explored, mainly because the advantages of the most commonly used tools are strongly limited in non-model organisms. One of the most accurate used markers for population genetics is single nucleotide polymorphisms (SNP). A highly efficient strategy for genome-wide SNP detection is genotyping-by-sequencing (GBS), which has been already widely applied in many organisms. This study attempts to use GBS in 12 conservative goose breeds and the White Kołuda® breed maintained in Poland. The GBS method allowed for the detection of 3833 common raw SNPs. Nevertheless, after filtering for read depth and alleles characters, we obtained the final markers panel used for a differentiation analysis that comprised 791 SNPs. These variants were located within 11 different genes, and one of the most diversified variants was associated with the EDAR gene, which is especially interesting as it participates in the plumage development, which plays a crucial role in goose breeding.


2019 ◽  
Vol 15 ◽  
pp. 117693431988994
Author(s):  
Shulin Zhang ◽  
Yaling Cai ◽  
Jinggong Guo ◽  
Kun Li ◽  
Renhai Peng ◽  
...  

Determining the genetic rearrangement and domestication footprints in Gossypium hirsutum cultivars and primitive race genotypes are essential for effective gene conservation efforts and the development of advanced breeding molecular markers for marker-assisted breeding. In this study, 94 accessions representing the 7 primitive races of G hirsutum, along with 9 G hirsutum and 12 Gossypium barbadense cultivated accessions were evaluated. The genotyping-by-sequencing (GBS) approach was employed and 146 558 single nucleotide polymorphisms (SNP) were generated. Distinct SNP signatures were identified through the combination of selection scans and association analyses. Phylogenetic analyses were also conducted, and we concluded that the Latifolium, Richmondi, and Marie-Galante race accessions were more genetically related to the G hirsutum cultivars and tend to cluster together. Fifty-four outlier SNP loci were identified by selection-scan analysis, and 3 SNPs were located in genes related to the processes of plant responding to stress conditions and confirmed through further genome-wide signals of marker-phenotype association analysis, which indicate a clear selection signature for such trait. These results identified useful candidate gene locus for cotton breeding programs.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yue-miao Zhang ◽  
Fa-juan Cheng ◽  
Xu-jie Zhou ◽  
Yuan-yuan Qi ◽  
Ping Hou ◽  
...  

Objectives. Numerous loci were identified to perturb gene expression intrans. As elevatedATG5expression was observed in systemic lupus erythematosus (SLE), the study was conducted to analyze the genome-wide genetic regulatory mechanisms associated withATG5expression in a Chinese population with lupus nephritis (LN).Methods. The online expression quantitative trait loci database was searched fortrans-expression single nucleotide polymorphisms (trans-eSNPs) ofATG5. Taggingtrans-eSNPs were genotyped by a custom-made genotyping chip in 280 patients and 199 controls. For positive findings, clinical information and bioinformation analyses were performed.Results. Fourtrans-eSNPs were observed to be associated with susceptibility to LN (P< 0.05), including ANKRD50 rs17008504, AGA rs2271100, PAK7 rs6056923, and TET2 rs1391441, while seven othertrans-eSNPs showed marginal significant associations (0.05 <P< 0.1). Correlations between thetrans-eSNPs andATG5expression and different expression levels ofATG5in SLE patients and controls were validated, and their regulatory effects were annotated. However, no significant associations were observed between different genotypes oftrans-eSNPs and severity or outcome of the patients.Conclusion. Using the new systemic genetics approach, we identified 10 loci associated with susceptibility to LN potentially, which may be complementary to future pathway based genetic studies.


2011 ◽  
Vol 96 (2) ◽  
pp. E394-E403 ◽  
Author(s):  
Neeraj K. Sharma ◽  
Kurt A. Langberg ◽  
Ashis K. Mondal ◽  
Steven C. Elbein ◽  
Swapan K. Das

abstract Context: Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. Objective: We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (SI). Design, Settings, and Patients: Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of SI and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. Results: SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = −0.305) and SI (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. Conclusions: Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.


Sign in / Sign up

Export Citation Format

Share Document