scholarly journals On Gram-Positive- and Gram-Negative-Bacteria-Associated Canine and Feline Skin Infections: A 4-Year Retrospective Study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1603
Author(s):  
Francesca Paola Nocera ◽  
Monica Ambrosio ◽  
Filomena Fiorito ◽  
Laura Cortese ◽  
Luisa De Martino

A 4-year retrospective study (2016–2019) of selected routine bacteriological examinations of the veterinary microbiology laboratory of the University Veterinary Teaching Hospital of Naples (Italy) was carried out. A total of 189 bacteriological samples were collected from 171 dogs and 18 cats suffering from skin infections. In dogs, the most common cutaneous infection was otitis externa, while pyoderma was found to be prevalent in cats. The number of recorded Gram-positive strains over the study period did not vary considerably from year to year and was always significantly higher (p-value = 0.0007) in comparison with Gram-negative bacterial isolations. In dogs, Staphylococcus pseudintermedius was the most common identified Gram-positive bacterium (65%), while Pseudomonas aeruginosa (36%) was the one among the isolated Gram-negative bacteria. In cats, coagulase-negative staphylococci were the most predominant isolated bacteria (47%). The phenotypic profiles of antibiotic resistance showed that most of the strains were resistant to amoxicillin–clavulanate, penicillin, clindamycin, and trimethoprim–sulfamethoxazole. Several multi-drug-resistant strains (35%) were detected in canine isolates. An updating of antibiotic resistance profiles of the main Gram-positive and Gram-negative bacteria principally associated with skin infections of pet animals is necessary to improve stewardship programs of veterinary hospitals and clinics.

Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 436
Author(s):  
Giovanni Parente ◽  
Tommaso Gargano ◽  
Stefania Pavia ◽  
Chiara Cordola ◽  
Marzia Vastano ◽  
...  

Pyelonephritis (PN) represents an important cause of morbidity in the pediatric population, especially in uropathic patients. The aim of the study is to demonstrate differences between PNs of uropathic patients and PNs acquired in community in terms of uropathogens involved and antibiotic sensitivity; moreover, to identify a proper empiric therapeutic strategy. A retrospective study was conducted on antibiograms on urine cultures from PNs in vesicoureteral reflux (VUR) patients admitted to pediatric surgery department and from PNs in not VUR patients admitted to Pediatric Emergency Unit between 2010 and 2020. We recorded 58 PNs in 33 patients affected by VUR and 112 PNs in the not VUR group. The mean age of not VUR patients at the PN episode was 1.3 ± 2.6 years (range: 20 days of life–3 years), and almost all the urine cultures, 111 (99.1%), isolated Gram-negative bacteria and rarely, 1 (0.9%), Gram-positive bacteria. The Gram-negative uropathogens isolated were Escherichia coli (97%), Proteus mirabilis (2%), and Klebsiella spp. (1%). The only Gram-positive bacteria isolated was an Enterococcus faecalis. As regards the antibiograms, 96% of not VUR PNs responded to beta-lactams, 99% to aminoglycosides, and 80% to sulfonamides. For the VUR group, mean age was 3.0 years ± 3.0 years (range: 9 days of life–11 years) and mean number of episodes per patient was 2.0 ± 1.0 (range: 1–5); 83% of PNs were by Gram-negatives bacteria vs. 17% by Gram-positive: the most important Gram-negative bacteria were Pseudomonas aeruginosa (44%), Escherichia coli (27%), and Klebsiella spp. (12%), while Enterococcus spp. determined 90% of Gram-positive UTIs. Regimen ampicillin/ceftazidime (success rate: 72.0%) was compared to ampicillin/amikacin (success rate of 83.0%): no statistically significant difference was found (p = 0.09). The pathogens of PNs in uropathic patients are different from those of community-acquired PNs, and clinicians should be aware of their peculiar antibiotic susceptibility. An empiric therapy based on the association ampicillin + ceftazidime is therefore suggested.


2004 ◽  
Vol 48 (8) ◽  
pp. 2831-2837 ◽  
Author(s):  
Mizuyo Kurazono ◽  
Takashi Ida ◽  
Keiko Yamada ◽  
Yoko Hirai ◽  
Takahisa Maruyama ◽  
...  

ABSTRACT ME1036, formerly CP5609, is a novel parenteral carbapenem with a 7-acylated imidazo[5,1-b]thiazole-2-yl group directly attached to the carbapenem moiety of the C-2 position. The present study evaluated the in vitro activities of ME1036 against clinical isolates of gram-positive and gram-negative bacteria. ME1036 displayed broad activity against aerobic gram-positive and gram-negative bacteria. Unlike other marketed β-lactam antibiotics, ME1036 maintained excellent activity against multiple-drug-resistant gram-positive bacteria, such as methicillin-resistant staphylococci and penicillin-resistant Streptococcus pneumoniae (PRSP). The MICs of this compound at which 90% of isolates were inhibited were 2 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA), 2 μg/ml for methicillin-resistant coagulase-negative staphylococci, and 0.031 μg/ml for PRSP. In time-kill studies with six strains of MRSA, ME1036 at four times the MIC caused a time-dependent decrease in the numbers of viable MRSA cells. The activity of ME1036 against MRSA is related to its high affinity for penicillin-binding protein 2a, for which the 50% inhibitory concentration of ME1036 was approximately 300-fold lower than that of imipenem. In conclusion, ME1036 demonstrated a broad antibacterial spectrum and high levels of activity in vitro against staphylococci, including β-lactam-resistant strains.


Author(s):  
N. Jyothsna ◽  
A. Ramya ◽  
K. Abhilash ◽  
Bathsa Liza Johnson

<p class="abstract"><strong>Background:</strong> Our study was done to determine the pattern of antibiotic resistance of various strains of bacteria causing acute tonsillitis.</p><p class="abstract"><strong>Methods:</strong> the study was a randomized cross sectional study. Patients matching the inclusion criteria were included. Duration of study was 6 months.</p><p class="abstract"><strong>Results:</strong> Out of 120 cases, 46 cases showed no bacterial growth (NBG) and 74 cases showed bacterial growth. 42 cases were gram-negative bacterial strain and 32 cases were positive bacterial strain out of 72 bacterial grown cases. A list of 25 antibiotic drugs in gram-negative and 31 drugs in gram-positive strain, their sensitivity and resistance were taken and noted. Among gram-negative bacteria imipenem (71.4%) showed highest sensitivity. Highest antibiotic resistance was seen in ampicillin (85.71%). Least sensitivity is observed in clindamycin, amoxicillin+clavulanic acid with 2.38%. Among gram-positive bacteria, highest sensitivity was noted in cefotaxime (75%). Highest antibiotic resistance was seen in cotrimoxazole (46.8%). Least sensitivity is observed in netilmicin, sulbactam with 3.12%.</p><p class="abstract"><strong>Conclusions:</strong> The number of drugs resistant to the gram-positive bacteria are lesser than number of drugs sensitive, which showed significant difference (p&lt;0.05). Significant difference of antibiotic drugs was not found in gram-negative bacteria. Our study findings helped in appropriate and guarded use of the antibiotic drugs in acute tonsillitis, minimizing the exposure of individuals to antibiotic resistance by choosing an appropriate sensitive drug, therefore improving the quality of therapy.</p>


2020 ◽  
Vol 65 (9) ◽  
pp. 562-566
Author(s):  
I. V. Shipitsyna ◽  
E. V. Osipova ◽  
O. A. Astashova ◽  
D. S. Leonchuk

The annual monitoring of the species composition of the causative agents of osteomyelitis, the identification of antibiotic-resistant strains, the study of the species composition of associations of microorganisms, their adhesive activity will prevent the spread of infection. Analyze the spectrum of the leading causative agents of osteomyelitis, their antibiotic sensitivity, and also the adhesive activity of the identified bacterial associations. A microbiological analysis of 2197 smears of adult patients with various etiological forms of osteomyelitis who were treated in the departments of the purulent center of the FSBI «NMRCTO» of the RF Ministry of Health in 2019. The spectrum of pathogenic microflora, sensitivity to standard antibacterial drugs used in the clinic was studied. The biofilm-forming ability of associations of microorganisms was investigated. According to the conducted microbiological monitoring for 2019, the microflora spectrum for osteomyelitis is diverse, the main pathogens are S. aureus, S. epidermidis, P. aeruginosa, K. pneumoniae, Enterococcus sp. A high percentage of isolation of microbial associations was noted, most often mix cultures of gram-positive and gram-negative bacteria. Bacterial associations: S. aureus + P. aeruginosa, S. aureus + S. marcescens, S. aureus + A. baumannii, S. epidermidis + E. cloacae - actively formed a biofilm on the surface of polystyrene plates, and the adhesive potential depended on interstrain relations in the composition of the formed biofilm. Among Gram-negative microflora, multiresistant strains prevail, among Gram-positive microflora - a high percentage of methicillin-resistant Staphylococci. When analyzing the antibiotic sensitivity of the isolated microorganisms, a high percentage of resistant strains is noted. So, with respect to enterobacteria, β-lactam antibiotics, drugs from the group of aminoglycosides, turned out to be ineffective. Among non-fermenting gram-negative bacteria, A. baumannii strains had multiple antimicrobial resistance. Among gram-positive microorganisms, a high percentage of isolation of methicillin-resistant staphylococci was noted. The specificity of the course of the disease and measures aimed at eliminating the pathogen depend on the species composition in the focus of infection. The study of the etiological structure of osteomyelitis, the monitoring of the antibiotic resistance of pathogens and their persistent potential, makes it possible to adopt sound tactics of conservative and surgical treatment.


2001 ◽  
Vol 22 (12) ◽  
pp. 767-770 ◽  
Author(s):  
Ruben Bromiker ◽  
Ilan Arad ◽  
Ofra Peleg ◽  
Aviya Preminger ◽  
Dan Engelhard

AbstractObjective:To determine the incidence and evaluate the antimicrobial-susceptibility patterns of bacterial infections in our neonatal units.Design:Retrospective surveillance study.Setting:The neonatal units of the Hadassah University Hospitals, Jerusalem, Israel.Patients:All newborns admitted from January 1994 through February 1999.Methods:The records of all patients with positive blood and cerebrospinal fluid cultures were reviewed. Bacteremia was considered early-onset (vertical) when occurring within the first 72 hours of life and late-onset (nosocomial) when occurring later. The prevalence and antibiotic-resistance patterns of vertically transmitted and nosocomially acquired strains were compared and studied over time.Results:219 of 35,691 newborn infants had at least one episode of bacteremia (6.13/1,000 live births). There were 305 identified organisms, of which 21% (1.29/1,000 live births) were considered vertically transmitted and 79% nosocomially acquired. The most common organism causing early-onset disease (29.2%) was group B streptococcus (0.38/1,000 live births), whereas coagulase-negative staphylococci (51%) were the most prevalent in late-onset disease. All gram-positive bacteria were susceptible to vancomycin. Most gram-positive organisms other than staphylococci were susceptible to ampicillin. Gram-negative organisms represented 31% of all isolates. Generally, there was a trend of increasing resistance to commonly used antibiotics among nosocomially acquired gram-negative organisms, compared to those vertically transmitted, with statistically significant differences for ampicillin and mezlocillin (P<.05 andP<.01, respectively). Over the years, a trend toward an increasing resistance to antibiotics was observed among gram-negative organisms.Conclusions:The trend of increasing bacterial resistance to commonly used antibiotics necessitates the implementation of a rational empirical treatment strategy, based on local susceptibility data, reserving certain agents for emerging resistant pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1954
Author(s):  
Charlotte M. J. Wesseling ◽  
Thomas M. Wood ◽  
Kristine Bertheussen ◽  
Samantha Lok ◽  
Nathaniel I. Martin

The continued rise of antibiotic resistance threatens to undermine the utility of the world’s current antibiotic arsenal. This problem is particularly troubling when it comes to Gram-negative pathogens for which there are inherently fewer antibiotics available. To address this challenge, recent attention has been focused on finding compounds capable of disrupting the Gram-negative outer membrane as a means of potentiating otherwise Gram-positive-specific antibiotics. In this regard, agents capable of binding to the lipopolysaccharide (LPS) present in the Gram-negative outer membrane are of particular interest as synergists. Recently, thrombin-derived C-terminal peptides (TCPs) were reported to exhibit unique LPS-binding properties. We here describe investigations establishing the capacity of TCPs to act as synergists with the antibiotics erythromycin, rifampicin, novobiocin, and vancomycin against multiple Gram-negative strains including polymyxin-resistant clinical isolates. We further assessed the structural features most important for the observed synergy and characterized the outer membrane permeabilizing activity of the most potent synergists. Our investigations highlight the potential for such peptides in expanding the therapeutic range of antibiotics typically only used to treat Gram-positive infections.


2020 ◽  
Author(s):  
Meng Li ◽  
Mingmei Du ◽  
Honghua Li ◽  
Yunxi Liu ◽  
Daihong Liu

Abstract Background: To investigate epidemiology, antibiotic-susceptibility of pathogens, and risk factors for mortality of bloodstream infection (BSI) in patients with hematological malignancies (HMs).Methods: Single-centre retrospective analysis of BSI episodes in patients with HMs in a Chinese tertiary hospital from 2012 to 2019.Results: Among 17,796 analyzed admissions, 508 BSI episodes (2.85%) were identified. Of the 522 isolates, 326 (62.45%) were Gram-negative bacteria, 173 (33.14%) were Gram-positive bacteria, and 23 (4.41%) were fungi. The incidence of BSI differed significantly among the patients with different HMs (P = 0.000): severe aplastic anemia (6.67%), acute leukemia (6.15%), myelodysplastic syndrome(3.22%), multiple myeloma (1.29%), and lymphoma (1.02%). Escherichia coli (30.65%, 160/522) was the most common pathogens, followed by Coagulase-negative staphylococci (CoNS) (19.35%, 101/522) and Klebsiella pneumonia(9.96%, 52/522). The resistance rates of E. coli, K. pneumonia, P. aeruginosa, and A. baumannii to carbapenems were 6.42%, 15.00%, 27.78%, and 78.95%, respectively. All the Gram-positive pathogens were susceptible to linezolid, and 3 vancomycin-resistant Enterococcus were isolated. The overall 14-day mortality was 9.84%. The mortality of BSI caused by A. baumannii was 73.86%, while caused by other pathogens was 7.36% (p=0.000). A multivariate analysis showed that age >65 years, A. baumannii and non-remission of the malignancy were independent predictors of 14-day mortality.Conclusion: Gram-negative bacteria continued to be the most common pathogens causing BSIs in HM patients. An extensive multi-drug resistant baumanni with high mortality rate in HM patients made empirical antimicrobial choice a highly challenging issue.


2019 ◽  
Vol 4 (2) ◽  
pp. 69-74
Author(s):  
Ghazaleh Ilbeigi ◽  
Ashraf Kariminik ◽  
Mohammad Hasan Moshafi

Introduction: Given the increasing rate of antibiotic resistance among bacterial strains, many researchers have been working to produce new and efficient and inexpensive antibacterial agents. It has been reported that some nanoparticles may be used as novel antimicrobial agents.Here, we evaluated antibacterial properties of nickel oxide (NiO) nanoparticles. Methods: NiO nanoparticles were synthesized using microwave method. In order to control the quality and morphology of nanoparticles, XRD (X-ray diffraction) and SEM (scanning electronmicroscope) were utilized. The antibacterial properties of the nanoparticles were assessed against eight common bacterial strains using agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured. Antibiotic resistance pattern of the bacteria to nine antibiotics was obtained by Kirby-Bauer disk diffusion method. Results: The crystalline size and diameter (Dc) of NiO nanoparticles were obtained 40-60 nm. The nanoparticles were found to inhibit the growth of both gram-positive and gram-negative bacteria with higher activity against gram-positive organisms. Among bacterial strains, maximum sensitivity was observed in Staphylococcus epidermidis with MIC and MBC of 0.39 and 0.78 mg/mL, respectively. The bacteria had high resistance to cefazolin, erythromycin, rifampicin,ampicillin, penicillin and streptomycin.Conclusion: NiO nanoparticles exhibited remarkable antibacterial properties against gram positive and gram-negative bacteria and can be a new treatment for human pathogenic and antibiotic-resistant bacteria.


2020 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Reuben Essel Arhin ◽  
Henry Kwadwo Hackman ◽  
Barry Kojo Whyte ◽  
Alhassan Sa-eed

Purpose: To determine the diversity and distribution of bacteria contaminants on washroom fomites in a public university and their resistance to common antibiotics.Methodology: A sanitation audit was conducted on 21 selected washrooms on seven different blocks in a university. Swabs were collected from 68 washroom fomites for bacterial isolation and biochemical identification. Antimicrobial susceptibility testing was performed for 22 Gram positive and 41 Gram negative bacteria species.Findings: Of 21 washrooms none had toiletries, 71% did not have flowing water and 90% were in the category of generally unclean. Of 169 bacteria isolated Staphylococcus aureus and Escherichia coli were the predominant species. Of 68 fomites all had bacterial contaminants with 83.8% having 2 to 3 co-occurring species. Gram positive bacteria isolated were resistant to augmentin (100%), meropenem (94%), penicillin (91%), cefuroxime (86%), vancomycin (86%), erythromycin (67%), cloxacillin (64%), tetracyclin (64%), ciprofloxacin (59%), cotrimoxazole (59%), ampicillin (50%) and gentamicin (36%). Gram negative bacteria isolated were resistant to meropenem (97%), ceftriaxone (95%), ampicillin (93%), cefuroxime (91%), cefotaxime (84%), vancomycin (82%), tetracyclin (80%), cotrimoxazole (78%), chloramphenicol (50%), ciprofloxacin (71%), amikacin (40%) and gentamicin (24%). Unique contribution to theory, practice and policy: Previous studies on bacteria on fomites in Ghana have focused on healthcare settings. This study focused on a university campus which is a non-healthcare setting with a high human presence and pressure on existing washroom facilities leading to contamination. The diversity of bacteria on the fomites are representative of clinically significant antibiotic resistant human enteric and skin flora carried by a seemingly healthy population and provide an indication of the potential antibiotic resistance burden in the user community.


Sign in / Sign up

Export Citation Format

Share Document