scholarly journals Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model

Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 632 ◽  
Author(s):  
Shengyu Xu ◽  
Pan Zhang ◽  
Meng Cao ◽  
Yanpeng Dong ◽  
Jian Li ◽  
...  

This study explored the impact of fresh sweet potato vine on the growth as well as the metabolites and colon microbial composition in Chinese Meishan gilt. Twenty Meishan gilts (body weight 30 ± 0.18 kg, n = 10 per treatment) were randomly assigned to a control (CON) or sweet potato vine (SPV) supplementation diet treatment. Gilts were housed in individual stalls. In the SPV treatment, 2 kg fresh sweet potato vine was used instead of 0.18 kg basal diet which provided the same amount of digestive energy and crude protein with the exception of crude fiber (CON, 51.00 g/d vs. SPV, 73.94 g/d) in terms of dry matter intake. Gilts were slaughtered and samples were collected on day 19 after the third estrus cycle. The SPV treatment tended to increase slaughter weight of gilts (p = 0.07); it also increased (p < 0.05) gastrointestinal tract weight and intestinal muscle layer thickness. SPV treatment also decreased (p < 0.05) carcass yield and subcutaneous adipose tissue. The concentration of zonulin and endotoxin in plasma was decreased (p < 0.05) as the gilt consumed the SPV diet. Colonic fecal concentrations of endotoxin, lipocalin-2, and tumor necrosis factor-α (TNF-α) were decreased (p < 0.05), and interleukin-10 (IL-10) was increased (p < 0.05) in the SPV treatment. Butyric acid and acetate concentration in colonic content as well as acetate concentration in caecal content were increased (p < 0.05) in the SPV treatment. Furthermore, the expression of carnitine palmityl transferase (CPT-1) and peroxisome proliferator-activated receptor-α (PPAR-α) in gilt liver in SPV treatment was increased (p < 0.05) in comparison with CON treatment. Meanwhile, the composition of the colon microbes was also altered by SPV; representative changes included an increase in Lactobacillus, Bacteroides, Roseburia, and Lachnospira. These results indicate that gilt fed with sweet potato vine had decreased gut permeability, endotoxin and pro-inflammatory cytokines concentrations; colonic fecal microbiota was also changed, which may be further beneficial to the intestinal health of Chinese Meishan gilt.

2021 ◽  
Vol 22 (11) ◽  
pp. 6074
Author(s):  
Maciej Danielewski ◽  
Agnieszka Matuszewska ◽  
Adam Szeląg ◽  
Tomasz Sozański

Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.


2008 ◽  
Vol 52 (8) ◽  
pp. 2882-2889 ◽  
Author(s):  
Metodi V. Stankov ◽  
Reinhold E. Schmidt ◽  
Georg M. N. Behrens

ABSTRACT Lipoatrophy is a prevalent side effect of treatment with thymidine analogues. We wished to confine the time point of the antiadipogenic effect of zidovudine (AZT) during adipogenesis and to evaluate the antiproliferative effect of AZT on adipocyte homeostasis. We investigated the effects of AZT on adipogenesis in 3T3-F442A cells and studied their proliferation, differentiation, viability, and adiponectin expression. Cells were exposed to AZT (1 μM, 3 μM, 6 μM, and 180 μM), stavudine (d4T; 3 μM), or dideoxycytosine (ddC; 0.1 μM) for up to 15 days. Differentiation was assessed by real-time PCR and quantification of triglyceride accumulation. Proliferation and clonal expansion were determined by a [3H]thymidine incorporation assay. When they were induced to differentiate in the presence of AZT at the maximum concentration in plasma (C max) and lower concentrations, 3T3-F442A preadipocytes failed to accumulate cytoplasmic triacylglycerol and failed to express normal levels of the later adipogenic transcription factors, CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. AZT exerted an inhibitory effect on the completion of the mitotic clonal expansion, which resulted in incomplete 3T3-F442A differentiation and, finally, a reduction in the level of adiponectin expression. In addition, AZT impaired the constitutive proliferation in murine and primary human subcutaneous preadipocytes. In contrast, incubation with d4T and ddC at the C max did not affect either preadipocyte proliferation or clonal expansion and differentiation. We conclude that the antiproliferative and antiadipogenetic effects of AZT on murine and primary human preadipocytes reveal the impact of the drug on fat tissue regeneration. These effects of the drug are expected to contribute to disturbed adipose tissue homeostasis and to be influenced by differential drug concentration and penetration in individual patients.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3525-3538 ◽  
Author(s):  
Hong Guo ◽  
Merlijn Bazuine ◽  
Daozhong Jin ◽  
Merry M. Huang ◽  
Samuel W. Cushman ◽  
...  

Lipocalin 2 (Lcn2) has previously been characterized as an adipokine/cytokine playing a role in glucose and lipid homeostasis. In this study, we investigate the role of Lcn2 in adipose tissue remodeling during high-fat diet (HFD)-induced obesity. We find that Lcn2 protein is highly abundant selectively in inguinal adipose tissue. During 16 weeks of HFD feeding, the inguinal fat depot expanded continuously, whereas the expansion of the epididymal fat depot was reduced in both wild-type (WT) and Lcn2−/− mice. Interestingly, the depot-specific effect of HFD on fat mass was exacerbated and appeared more pronounced and faster in Lcn2−/− mice than in WT mice. In Lcn2−/− mice, adipocyte hypertrophy in both inguinal and epididymal adipose tissue was more profoundly induced by age and HFD when compared with WT mice. The expression of peroxisome proliferator-activated receptor-γ protein was significantly down-regulated, whereas the gene expression of extracellular matrix proteins was up-regulated selectively in epididymal adipocytes of Lcn2−/− mice. Consistent with these observations, collagen deposition was selectively higher in the epididymal, but not in the inguinal adipose depot of Lcn2−/− mice. Administration of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone (Rosi) restored adipogenic gene expression. However, Lcn2 deficiency did not alter the responsiveness of adipose tissue to Rosi effects on the extracellular matrix expression. Rosi treatment led to the further enlargement of adipocytes with improved metabolic activity in Lcn2−/− mice, which may be associated with a more pronounced effect of Rosi treatment in reducing TGF-β in Lcn2−/− adipose tissue. Consistent with these in vivo observations, Lcn2 deficiency reduces the adipocyte differentiation capacity of stromal-vascular cells isolated from HFD-fed mice in these cells. Herein Rosi treatment was again able to stimulate adipocyte differentiation to a similar extent in WT and Lcn2−/− inguinal and epididymal stromal-vascular cells. Thus, combined, our data indicate that Lcn2 has a depot-specific role in HFD-induced adipose tissue remodeling.


2021 ◽  
pp. 1-17
Author(s):  
Jessica Lynn ◽  
Mingi Park ◽  
Christiana Ogunwale ◽  
George K. Acquaah-Mensah

Dementias, including the type associated with Alzheimer’s disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as “type 3 diabetes”. In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.


2020 ◽  
Vol 128 (4) ◽  
pp. 768-777
Author(s):  
Robert Shute ◽  
Katherine Marshall ◽  
Megan Opichka ◽  
Halee Schnitzler ◽  
Brent Ruby ◽  
...  

Cold environmental temperatures during exercise and recovery alter the acute response to cellular signaling and training adaptations. Approximately 3 wk is required for cold temperature acclimation to occur. To determine the impact of cold environmental temperature on training adaptations, fitness measurements, and aerobic performance, two groups of 12 untrained male subjects completed 1 h of cycling in 16 temperature acclimation sessions in either a 7°C or 20°C environmental temperature. Fitness assessments before and after acclimation occurred at standard room temperature. Muscle biopsies were taken from the vastus lateralis muscle before and after training to assess molecular markers related to mitochondrial development. Peroxisome proliferator-activated receptor-γ coactivator 1α ( PGC-1α) mRNA was higher in 7°C than in 20°C in response to acute exercise before training ( P = 0.012) but not after training ( P = 0.813). PGC-1α mRNA was lower after training ( P < 0.001). BNIP3 was lower after training in the 7°C than in the 20°C group ( P = 0.017) but not before training ( P = 0.549). No other differences occurred between temperature groups in VEGF, ERRα, NRF1, NRF2, TFAM, PINK1, Parkin, or BNIP3L mRNAs ( P > 0.05). PGC-1α protein and mtDNA were not different before training, after training, or between temperatures ( P > 0.05). Cycling power increased during the daily training ( P < 0.001) but was not different between temperatures ( P = 0.169). V̇o2peak increased with training ( P < 0.001) but was not different between temperature groups ( P = 0.460). These data indicate that a 3-wk period of acclimation/training in cold environmental temperatures alters PGC-1α gene expression acutely but this difference is not manifested in a greater increase in V̇o2peak and is dissipated as acclimation takes place. NEW & NOTEWORTHY This study examines the adaptive response of cellular signaling during exercise in cold environmental temperatures. We demonstrate that peroxisome proliferator-activated receptor-γ coactivator 1α mRNA is different between cold and room temperature environments before training but after training this difference no longer exists. This initial difference in transcriptional response between temperatures does not lead to differences in performance measures or increases in protein or mitochondria.


2019 ◽  
Vol 20 (11) ◽  
pp. 2675 ◽  
Author(s):  
Nicholas Wilson ◽  
Robert Steadman ◽  
Ilaria Muller ◽  
Mohd Draman ◽  
D. Aled Rees ◽  
...  

Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.


2020 ◽  
Vol 21 (24) ◽  
pp. 9577
Author(s):  
Dmitry V. Chistyakov ◽  
Alina A. Astakhova ◽  
Sergei V. Goriainov ◽  
Marina G. Sergeeva

Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.


2011 ◽  
Vol 89 (10) ◽  
pp. 743-751 ◽  
Author(s):  
Adil El Midaoui ◽  
Calin Lungu ◽  
Hui Wang ◽  
Lingyun Wu ◽  
Caroline Robillard ◽  
...  

This study sought to determine the impact of α-lipoic acid (LA) on superoxide anion (O2•–) production and peroxisome proliferator-activated receptor-α (PPARα) expression in liver tissue, plasma free fatty acids (FFA), and aortic remodeling in a rat model of insulin resistance. Sprague–Dawley rats (50–75 g) were given either tap water or a drinking solution containing 10% D-glucose for 14 weeks, combined with a diet with or without LA supplement. O2•– production was measured by lucigenin chemiluminescence, and PPAR-α expression by Western blotting. Cross-sectional area (CSA) of the aortic media and lumen and number of smooth muscle cells (SMC) were determined histologically. Glucose increased systolic blood pressure (SBP), plasma levels of glucose and insulin, and insulin resistance (HOMA index). All of these effects were attenuated by LA. Whereas glucose had no effect on liver PPAR-α protein level, it decreased plasma FFA. LA decreased the aortic and liver O2•– production, body weight, and plasma FFA levels in control and glucose-treated rats. Liver PPAR-α protein levels were increased by LA, and negatively correlated with plasma FFA. Medial CSA was reduced in all glucose-treated rats, and positively correlated with plasma FFA but not with SBP or aortic O2•– production. Glucose also reduced aortic lumen area, so that the media-to-lumen ratio remained unchanged. The ability of LA to lower plasma FFA appears to be mediated, in part, by increased hepatic PPAR-α expression, which may positively affect insulin resistance. Glucose-fed rats may serve as a unique model of aortic atrophic remodeling in hypertension and early metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document