scholarly journals Comparison of PPAR Ligands as Modulators of Resolution of Inflammation, via Their Influence on Cytokines and Oxylipins Release in Astrocytes

2020 ◽  
Vol 21 (24) ◽  
pp. 9577
Author(s):  
Dmitry V. Chistyakov ◽  
Alina A. Astakhova ◽  
Sergei V. Goriainov ◽  
Marina G. Sergeeva

Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.

2018 ◽  
Vol 19 (10) ◽  
pp. 3022 ◽  
Author(s):  
Junjun Shen ◽  
Tao Yang ◽  
Youzhi Xu ◽  
Yi Luo ◽  
Xinyue Zhong ◽  
...  

δ-Tocotrienol, an important component of vitamin E, has been reported to possess some physiological functions, such as anticancer and anti-inflammation, however their molecular mechanisms are not clear. In this study, δ-tocotrienol was isolated and purified from rice bran. The anti-inflammatory effect and mechanism of δ-tocotrienol against lipopolysaccharides (LPS) activated pro-inflammatory mediator expressions in RAW264.7 cells were investigated. Results showed that δ-tocotrienol significantly inhibited LPS-stimulated nitric oxide (NO) and proinflammatory cytokine (TNF-α, IFN-γ, IL-1β and IL-6) production and blocked the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 (ERK1/2). δ-Tocotrienol repressed the transcriptional activations and translocations of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), which were closely related with downregulated cytokine expressions. Meanwhile, δ-tocotrienol also affected the PPAR signal pathway and exerted an anti-inflammatory effect. Taken together, our data showed that δ-tocotrienol inhibited inflammation via mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR) signalings in LPS-stimulated macrophages.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1062 ◽  
Author(s):  
Michele Tufano ◽  
Graziano Pinna

Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer’s disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.


2008 ◽  
Vol 417 (1) ◽  
pp. 223-238 ◽  
Author(s):  
Ana M. Ferreira ◽  
Mariana I. Ferrari ◽  
Andrés Trostchansky ◽  
Carlos Batthyany ◽  
José M. Souza ◽  
...  

Nitroalkene derivatives of fatty acids act as adaptive, anti-inflammatory signalling mediators, based on their high-affinity PPARγ (peroxisome-proliferator-activated receptor γ) ligand activity and electrophilic reactivity with proteins, including transcription factors. Although free or esterified lipid nitroalkene derivatives have been detected in human plasma and urine, their generation by inflammatory stimuli has not been reported. In the present study, we show increased nitration of cholesteryl-linoleate by activated murine J774.1 macrophages, yielding the mononitrated nitroalkene CLNO2 (cholesteryl-nitrolinoleate). CLNO2 levels were found to increase ∼20-fold 24 h after macrophage activation with Escherichia coli lipopolysaccharide plus interferon-γ; this response was concurrent with an increase in the expression of NOS2 (inducible nitric oxide synthase) and was inhibited by the •NO (nitric oxide) inhibitor L-NAME (NG-nitro-L-arginine methyl ester). Macrophage (J774.1 and bone-marrow-derived cells) inflammatory responses were suppressed when activated in the presence of CLNO2 or LNO2 (nitrolinoleate). This included: (i) inhibition of NOS2 expression and cytokine secretion through PPARγ and •NO-independent mechanisms; (ii) induction of haem oxygenase-1 expression; and (iii) inhibition of NF-κB (nuclear factor κB) activation. Overall, these results suggest that lipid nitration occurs as part of the response of macrophages to inflammatory stimuli involving NOS2 induction and that these by-products of nitro-oxidative reactions may act as novel adaptive down-regulators of inflammatory responses.


Author(s):  
Roya Kazemi ◽  
Seyed Jalal Hosseinimehr

Objective: Pioglitazone (PG) is used to control high blood sugar in patients with type 2 diabetes mellitus. PG acts as a peroxisome proliferator-activated receptor γ agonist. In addition to the insulin-sensitizing effect, PG possesses anti-inflammatory effect. In this study, the protective effect of PG was evaluated against DNA damage induced by ionizing radiation in human healthy lymphocytes. Methods: The microtubes containing human whole blood were treated with PG at various concentrations (1-50 μM) for three hours. Then, the blood samples were irradiated with X-ray. Lymphocytes were cultured for determining the frequency of micronuclei as a genotoxicity biomarker in binucleated lymphocytes. Results: The mean percentage of micronuclei was significantly increased in human lymphocytes when were exposed to IR, while it was decreased in lymphocytes pre-treated with PG. The maximum reduction in the frequency of micronuclei in irradiated lymphocytes was observed at 5 μM of PG treatment (48% decrease). Conclusion: The anti-inflammatory property is suggested the mechanism action of PG for protection human lymphocytes against genotoxicity induced by ionizing radiation.


2012 ◽  
Vol 287 (42) ◽  
pp. 35161-35169 ◽  
Author(s):  
Jundong Zhou ◽  
Shuyu Zhang ◽  
Jing Xue ◽  
Jori Avery ◽  
Jinchang Wu ◽  
...  

Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists.


2021 ◽  
Vol 22 (19) ◽  
pp. 10431
Author(s):  
Gábor Kökény ◽  
Laurent Calvier ◽  
Georg Hansmann

Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.


2021 ◽  
Author(s):  
Fubiao Shi ◽  
Zoltan Simandi ◽  
Laszlo Nagy ◽  
Sheila Collins

AbstractIn addition to their established role to maintain blood pressure and fluid volume, the cardiac natriuretic peptides (NPs) can stimulate adipocyte lipolysis and control the brown fat gene program of nonshivering thermogenesis. The NP “clearance” receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well appreciated that the Nprc gene is highly expressed in adipose tissue and is dynamically regulated with nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here we identified Peroxisome Proliferator-Activated Receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, while siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. We demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.


Sign in / Sign up

Export Citation Format

Share Document