scholarly journals Lactobacillus crispatus BC1 Biosurfactant Delivered by Hyalurosomes: An Advanced Strategy to Counteract Candida Biofilm

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Angela Abruzzo ◽  
Barbara Giordani ◽  
Carola Parolin ◽  
Priscilla R. De Gregorio ◽  
Claudio Foschi ◽  
...  

The emergence of resistance to antifungal drugs has made the treatment of vulvovaginal candidiasis (VVC) very challenging. Among natural substances, biosurfactants (BS) produced by Lactobacillus have gained increasing interest in counteracting Candida infections for their proven anti-adhesive properties and safety profile. In the present study, liposomes (LP-BS) or liposomes coated with hyaluronic acid (HY-LP-BS) were prepared in the presence of the BS isolated from the vaginal strain Lactobacillus crispatus BC1 and characterized in terms of size, ζ potential, stability and mucoadhesion. The anti-biofilm activity of free BS, LP-BS and HY-LP-BS was investigated against different Candida albicans and non-albicans strains (C. glabrata, C. lusitaniae, C. tropicalis, C. krusei and C. parapsilosis), clinically isolated from patients affected by VVC. The inhibition of biofilm formation and the dispersal of pre-formed biofilm were evaluated. The obtained phospholipid vesicles showed suitable size for vaginal application and good stability over the storage period. HY-LP-BS exhibited good mucoadhesive properties and the best anti-biofilm profile, both in preventing or limiting the surface colonization by a broad spectrum of Candida species. In conclusion, the formulation of a novel antifungal agent derived from the vaginal microbiota into mucoadhesive nanocarriers appears to be a promising biotherapeutic strategy to counteract vulvovaginal candidiasis.

2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3438
Author(s):  
Tianxi Li ◽  
Lulu Li ◽  
Fangyuan Du ◽  
Lei Sun ◽  
Jichao Shi ◽  
...  

Harmful fungi in nature not only cause diseases in plants, but also fungal infection and poisoning when people and animals eat food derived from crops contaminated with them. Unfortunately, such fungi are becoming increasingly more resistant to traditional synthetic antifungal drugs, which can make prevention and control work increasingly more difficult to achieve. This means they are potentially very harmful to human health and lifestyle. Antifungal peptides are natural substances produced by organisms to defend themselves against harmful fungi. As a result, they have become an important research object to help deal with harmful fungi and overcome their drug resistance. Moreover, they are expected to be developed into new therapeutic drugs against drug-resistant fungi in clinical application. This review focuses on antifungal peptides that have been isolated from bacteria, fungi, and other microorganisms to date. Their antifungal activity and factors affecting it are outlined in terms of their antibacterial spectra and effects. The toxic effects of the antifungal peptides and their common solutions are mentioned. The mechanisms of action of the antifungal peptides are described according to their action pathways. The work provides a useful reference for further clinical research and the development of safe antifungal drugs that have high efficiencies and broad application spectra.


2019 ◽  
Vol 7 ◽  
Author(s):  
Iliana Bersani ◽  
Fiammetta Piersigilli ◽  
Bianca Maria Goffredo ◽  
Alessandra Santisi ◽  
Sara Cairoli ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 445 ◽  
Author(s):  
Gina Wall ◽  
Jose L. Lopez-Ribot

Fungal infections represent an increasing threat to a growing number of immune- and medically compromised patients. Fungi are eukaryotic organisms and, as such, there is a limited number of selective targets that can be exploited for antifungal drug development. This has also resulted in a very restricted number of antifungal drugs that are clinically available for the treatment of invasive fungal infections at the present time—polyenes, azoles, echinocandins, and flucytosine. Moreover, the utility of available antifungals is limited by toxicity, drug interactions and the emergence of resistance, which contribute to high morbidity and mortality rates. This review will present a brief summary on the landscape of current antifungals and those at different stages of clinical development. We will also briefly touch upon potential new targets and opportunities for novel antifungal strategies to combat the threat of fungal infections.


Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Chahrazed Benzaid ◽  
Amine Belmadani ◽  
Ryad Djeribi ◽  
Mahmoud Rouabhia

The rise in resistance and changes in the spectrum of Candida infections have generated enormous interest in developing new antifungal drugs using natural molecules such as plant essential oils (EOs). Antimicrobial activity against foodborne pathogenic and spoilage microorganisms has been reported for EOs. The goal of this study was to assess the effect of Mentha × piperita essential oil (EO) on C. albicans growth, transition (change from blastospore to hyphae forms), and biofilm formation as well as on the expression of certain virulent genes. We show that whole EO and its vapor attenuated the yeast’s growth, compared to that in the control. The effect of the EO was comparable to that of amphotericin-B (AmB). The EO and its vapor significantly decreased the morphological changes of C. albicans, reduced biofilm formation, and disrupted mature C. albicans biofilms. The effect produced by whole EO on biofilm formation/disruption was notably comparable to that observed with AmB. Exposure of C. albicans to EO and its vapor downregulated the expression of various genes, such as secreted aspartyl proteinases (SAP 1, 2, 3, 9, 10) and hyphal wall protein 1 (HWP1). Altogether, these results provide new insight into the efficacy of Mentha × piperita EO against C. albicans and suggest the potential of Mentha × piperita EO for use as an antifungal therapy in multiple applications.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 28 ◽  
Author(s):  
Anne-Céline Kohler ◽  
Leonardo Venturelli ◽  
Abhilash Kannan ◽  
Dominique Sanglard ◽  
Giovanni Dietler ◽  
...  

Yeast resistance to antifungal drugs is a major public health issue. Fungal adhesion onto the host mucosal surface is still a partially unknown phenomenon that is modulated by several actors among which fibronectin plays an important role. Targeting the yeast adhesion onto the mucosal surface could lead to potentially highly efficient treatments. In this work, we explored the effect of fibronectin on the nanomotion pattern of different Candida albicans strains by atomic force microscopy (AFM)-based nanomotion detection and correlated the cellular oscillations to the yeast adhesion onto epithelial cells. Preliminary results demonstrate that strongly adhering strains reduce their nanomotion activity upon fibronectin exposure whereas low adhering Candida remain unaffected. These results open novel avenues to explore cellular reactions upon exposure to stimulating agents and possibly to monitor in a rapid and simple manner adhesive properties of C. albicans.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
M. Anaul Kabir ◽  
Zulfiqar Ahmad

Infections caused by Candida species have been increased dramatically worldwide due to the increase in immunocompromised patients. For the prevention and cure of candidiasis, several strategies have been adopted at clinical level. Candida infected patients are commonly treated with a variety of antifungal drugs such as fluconazole, amphotericin B, nystatin, and flucytosine. Moreover, early detection and speciation of the fungal agents will play a crucial role for administering appropriate drugs for antifungal therapy. Many modern technologies like MALDI-TOF-MS, real-time PCR, and DNA microarray are being applied for accurate and fast detection of the strains. However, during prolonged use of these drugs, many fungal pathogens become resistant and antifungal therapy suffers. In this regard, combination of two or more antifungal drugs is thought to be an alternative to counter the rising drug resistance. Also, many inhibitors of efflux pumps have been designed and tested in different models to effectively treat candidiasis. However, most of the synthetic drugs have side effects and biomedicines like antibodies and polysaccharide-peptide conjugates could be better alternatives and safe options to prevent and cure the diseases. Furthermore, availability of genome sequences of Candida  albicans and other non-albicans strains has made it feasible to analyze the genes for their roles in adherence, penetration, and establishment of diseases. Understanding the biology of Candida species by applying different modern and advanced technology will definitely help us in preventing and curing the diseases caused by fungal pathogens.


2019 ◽  
Vol 50 (4) ◽  
pp. 293-98
Author(s):  
Luz Angela Castro ◽  
María Inés Álvarez ◽  
Gustavo Giusiano ◽  
Ernesto Martínez

Background: Candida auris is an emerging yeast frequently reported as resistant to multiple antifungal drugs commonly used to treat Candida infections. This specie can colonize the patient’s skin and has great ability for producing outbreaks in hospitals. C. auris is phylogenetically related to other Candida species, can be misidentified using conventional biochemical or commercial methods and requires specific technology for its identification. Case report: We report the first isolate of C. auris in Cali, Colombia, from a central venous catheter in a 37-year-old patient with rheumatoid arthritis and endocarditis who did not have symptoms of sepsis. The yeast was initially misidentified as C. haemulonii using the Phoenix® system and subsequently identified as C. auris by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry. The broth microdilution method was used to determine the minimum inhibitory concentration; the isolate was susceptible to fluconazole, itraconazole, voriconazole and amphotericin B. Conclusions: This report contributes to knowledge of the epidemiology of C. auris infections in individuals with underlying disease and describes an isolate with a behavior different from what is usually reported.


2020 ◽  
Vol 6 (2) ◽  
pp. FSO440 ◽  
Author(s):  
Mohd Sajjad Ahmad Khan ◽  
Fatimah Alshehrei ◽  
Saleh Bakheet Al-Ghamdi ◽  
Majid Abdullah Bamaga ◽  
Abdullah Safar Al-Thubiani ◽  
...  

Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis.


Sign in / Sign up

Export Citation Format

Share Document