scholarly journals Nanomaterials in Wound Healing and Infection Control

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 473
Author(s):  
Ali Pormohammad ◽  
Nadia K. Monych ◽  
Sougata Ghosh ◽  
Diana L. Turner ◽  
Raymond J. Turner

Wounds continue to be a serious medical concern due to their increasing incidence from injuries, surgery, burns and chronic diseases such as diabetes. Delays in the healing process are influenced by infectious microbes, especially when they are in the biofilm form, which leads to a persistent infection. Biofilms are well known for their increased antibiotic resistance. Therefore, the development of novel wound dressing drug formulations and materials with combined antibacterial, antibiofilm and wound healing properties are required. Nanomaterials (NM) have unique properties due to their size and very large surface area that leads to a wide range of applications. Several NMs have antimicrobial activity combined with wound regeneration features thus give them promising applicability to a variety of wound types. The idea of NM-based antibiotics has been around for a decade at least and there are many recent reviews of the use of nanomaterials as antimicrobials. However, far less attention has been given to exploring if these NMs actually improve wound healing outcomes. In this review, we present an overview of different types of nanomaterials explored specifically for wound healing properties combined with infection control.

2019 ◽  
Vol 17 (1) ◽  
pp. 228080001983035 ◽  
Author(s):  
Patrícia Varela ◽  
Susanna Sartori ◽  
Richard Viebahn ◽  
Jochen Salber ◽  
Gianluca Ciardelli

A major burden of the healthcare system resides in providing proper medical treatment for all types of chronic wounds, which are usually treated with dressings to induce a faster regeneration. Hence, to reduce healing time and improve the patient’s quality of life, it is extremely important to select the most appropriate constituent material for a specific wound dressing. A wide range of wound dressings exist but their mechanisms of action are poorly explored, especially concerning the immunomodulatory effects that occur from the interactions between immune cells and the biomaterial. Tissue-resident and monocyte-derived recruited macrophages are key regulators of wound repair. These phagocytic immune cells exert specific functions during the different stages of wound healing. The recognition of the substantial role of macrophages in the outcome of the wound healing process requires specific understanding of the immunomodulatory effects of commercially available or newly developed wound dressings. For a precise intervention, it is necessary to obtain more knowledge on macrophage polarization in different phases of wound healing in the presence of the dressings. The main purpose of this review is to collect clinical cases in which macrophage immunomodulation was taken into consideration as an indicator of the performances of novel or mainstream wound dressing materials, including those provided with antimicrobial properties.


2015 ◽  
Vol 3 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaorong Zhang ◽  
Rui Xu ◽  
Xiaohong Hu ◽  
Gaoxing Luo ◽  
Jun Wu ◽  
...  

Abstract Background For patients with skin defects such as burns, wound dressing plays important roles in protecting the wound. Before a novel wound dressing is applied to a patient, a series of tests should be performed to ensure its safety and efficacy. Different types of animal wound-healing models have been used to study the bio-function of different wound dressings; however, a systematic way to evaluate the effect of a wound dressing on wound healing and cutaneous regeneration is lacking. Methods In the study presented here, full-thickness wound models were established in mice, and a systematic way to quantitatively analyze the wound-healing process and the histological results is described. Results It was found that the rate of wound healing in the tested wound dressing (TWD) group was higher than that in the control group, and the re-epithelialization and the formation of granulation tissue were enhanced when the TWD was applied. Meanwhile, the inflammatory response was attenuated in the TWD group, and more mature and better aligned collagen fibers in the healed wound tissue was found in the TWD group compared with that in the control group. Conclusions A systematic, quantitative way to analyze the effect of a wound dressing on wound healing was established. And it might be helpful for the design of wound dressing in the future.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2021 ◽  
pp. 088532822199601
Author(s):  
Linying Shi ◽  
Fang Lin ◽  
Mou Zhou ◽  
Yanhui Li ◽  
Wendan Li ◽  
...  

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds i n vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.


2020 ◽  
Vol 29 (9) ◽  
pp. 488-495
Author(s):  
Amene Nikgoftar Fathi ◽  
Mohammad Hassan Sakhaie ◽  
Sepehr Babaei ◽  
Soroush Babaei ◽  
Fateme Slimabad ◽  
...  

Objective: To assess the effect of bromelain on different aspects of the wound healing process in type 1 diabetic rats. Method: In this study, 112 streptozocin-diabetic (type 1) male Wistar rats were euthanised; 28 each on days three, five, seven and 15, after a wound incision had been made. To estimate changes in a number of different cellular and tissue elements, histological sections were provided from all wound areas and stained with haematoxylin and eosin. Some 1.056mm2 of total wound area from all specimens were evaluated, by assessment of 4200 microscope photos provided from all histological sections, by stereological methods. A biomechanical test of each wound area was performed with an extensometer to evaluate the work-up to maximum force and maximum stress of the healed wound on day 15. Results: In the experimental groups, bromleain caused significant wound contraction and reduced granulation tissue formation by day 7 (p=0.003); increased neovasculars (new small vessels that appear in the wound area during wound healing) on days three, five and seven (p=0.001); significantly increased fibroblasts on day five but decreased by day seven (p=0.002); and significantly decreased macrophage numbers and epithelium thickness on all days of study (p=0.005). Wound strength significantly increased in experimental groups by day 15. Conclusion: Bromelain has a wide range of therapeutic benefits, but in most studies the mode of its action is not properly understood. It has been proved that bromelain has no major side effects, even after prolonged use. According to the results of this study, bromelain can be used as an effective health supplement to promote and accelerate wound healing indices, reduce inflammation and improve biomechanical parameters in diabetic wounds.


2017 ◽  
Vol 16 (4) ◽  
pp. 244-250 ◽  
Author(s):  
Kanokwan Kulprachakarn ◽  
Sakaewan Ounjaijean ◽  
Jukkrit Wungrath ◽  
Raj Mani ◽  
Kittipan Rerkasem

The diabetic foot ulcer (DFU) is an invariably common complication of diabetes mellitus, it is also a significant cause of amputation as well as extended hospitalization. As most patients with DFU suffer from malnutrition, which has been related to improper metabolic micronutrients status, alterations can affect impaired wound healing process. Micronutrients and herbal remedies applications present a wide range of health advantages to patients with DFU. The purpose of this review is to provide current evidence on the potential effect of dietary supplementations such as vitamins A, C, D, E, magnesium, zinc, copper, iron, boron, and such naturally occurring compounds as Aloe vera, Naringin, and Radix Astragali (RA) and Radix Rehmanniae (RR) in the administration of lower extremity wounds, especially in DFU, and to present some insights for applications in the treatment of DFU patients in the future.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2959 ◽  
Author(s):  
Sindi P. Ndlovu ◽  
Kwanele Ngece ◽  
Sibusiso Alven ◽  
Blessing A. Aderibigbe

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


2021 ◽  
Vol 66 (No. 3) ◽  
pp. 99-109
Author(s):  
M Munir ◽  
SNH Shah ◽  
U Almas ◽  
FA Khan ◽  
A Zaidi ◽  
...  

The objective of this study was to produce a Carbopol 940 based gel formula containing an Azadirachta indica leaf extract and evaluate its wound healing potential. The ethanolic extract was derived from the dried leaves of Azadirachta indica and was subjected to a phytochemical evaluation. Three gel formulations of Carbopol 940 containing an Azadirachta indica extract in three different concentrations, i.e., 1, 2, and 3% w/w were prepared. These gels were evaluated for their physical appearance, stability, antimicrobial activity, extrudability, skin irritability, pH, spreadability, and viscosity. The prepared formulas were stable, greenish and homogeneous. None of them showed irritation to the skin. The spreadability (g.cm/sec), viscosity (cps), and pH of all three formulations was 34.68, 53 270–65 400, and 6–7, respectively. Gel-III exhibited the highest antimicrobial potential against E. coli and P. aeruginosa with a zone of inhibition of 16.2 ± 0.6 mm and 15.6 ± 0.6 mm, respectively. It was revealed from the wound healing studies that the epithelialisation time for the Albino rabbits treated with Gel-III was 23 days. The Albino rabbits treated with Gel-I, Gel-II, a standard gel, and those with the untreated one (control), epithelialised in 27, 25, 26, and 34 days, respectively. A formulation containing 3% w/w extract showed better antimicrobial activity, physicochemical characteristics, and pharmacological parameters than the other formulations. It can be concluded that the wound healing process was faster with the gel formulation containing 3% w/w of the Azadirachta indica extract, proposing that this formulation is a promising candidate for wound healing.


2021 ◽  
Vol 11 (9) ◽  
pp. 890
Author(s):  
Andreea Barbu ◽  
Bogdan Neamtu ◽  
Marius Zăhan ◽  
Gabriela Mariana Iancu ◽  
Ciprian Bacila ◽  
...  

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.


Sign in / Sign up

Export Citation Format

Share Document