scholarly journals Short Chain Fatty Acids Commonly Produced by Gut Microbiota Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 265 ◽  
Author(s):  
Alexandre Lamas ◽  
Patricia Regal ◽  
Beatriz Vázquez ◽  
Alberto Cepeda ◽  
Carlos Manuel Franco

Short chain fatty acids (SCFAs) are commonly produced by healthy gut microbiota and they have a protective role against enteric pathogens. SCFAs also have direct antimicrobial activity against bacterial pathogens by diffusion across the bacterial membrane and reduction of intracellular pH. Due to this antimicrobial activity, SCFAs have promising applications in human health and food safety. In this study, the minimum inhibitory concentrations (MICs) of four SCFAs (acetic acid, butyric acid, propionic acid, and valeric acid) in Salmonella strains isolated from poultry were determined. The effect of subinhibitory concentrations of SCFAs in Salmonella biofilm formation, motility, and gene expression was also evaluated. Butyric acid, propionic acid, and valeric acid showed a MIC of 3750 µg/mL in all strains tested, while the MIC of acetic acid was between 1875 and 3750 µg/mL. Subinhibitory concentrations of SCFAs significantly (p < 0.05) reduced the motility of all Salmonella strains, especially in the presence of acetic acid. Biofilm formation was also significantly (p < 0.05) lower in the presence of SCFAs in some of the Salmonella strains. Salmonella strain. Salmonella Typhimurium T7 showed significant (p < 0.05) upregulation of important virulence genes, such as invA and hilA, especially in the presence of butyric acid. Therefore, SCFAs are promising substances for the inhibition of the growth of foodborne pathogens. However, it is important to avoid the use of subinhibitory concentrations that could increase the virulence of foodborne pathogen Salmonella.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shaodan Sun ◽  
Yang Yang ◽  
Xiaojie Lin ◽  
Peiwen Chen ◽  
Liyan Ye ◽  
...  

Background. Qiweibaizhu decoction (QBD), a classic Chinese herbal formula, has been widely used for treating diarrhea in infants and children with spleen deficiency syndrome for centuries, but its mechanism of action remains unclear. The gut microbiota, short-chain fatty acids (SCFAs), and intestinal mucus are closely associated with diarrhea. Methods. In this study, the composition of the gut microbiota in diarrheal rats was analyzed by 16S rDNA amplicon sequencing. The concentrations of colon SCFAs were determined using gas chromatography-mass spectrometry (GC-MS). The expression of mucin 2 (MUC2) in the colon was detected by immunofluorescence. Results. Diarrhea significantly changed the diversity and structure of the gut microbiota and disrupted the mucus barrier in juvenile rats. QBD did not significantly change the diversity and structure of the intestinal flora, but it enhanced the increasing tendencies of Verrucomicrobia and Akkermansia and decreased the abundance of Turicibacter ( P = 0.037 ) and Flavonifractor ( P = 0.043 ). QBD tends to repair the mucus layer and promote MUC2 expression in juvenile rats with diarrhea. Moreover, S. boulardii significantly increased the abundance of Parasutterella ( P = 0.043 ). In addition, QBD treatment tends to increase the propionic acid concentration during diarrhea, but its levels of acetic acid, propionic acid, butyric acid, and total SCFAs were lower than those in the S. boulardii group. Conclusion. S. boulardii significantly increased the abundance of Parasutterella, leading to increased production of acetic acid, propionic acid, and butyric acid, consequently leading to alleviation of diarrhea. In comparison, QBD affected diarrhea via regulation of the intestinal flora, especially by increasing the abundance of Verrucomicrobia and Akkermansia, resulting in mucus barrier repair, protection of the intestines, and treatment of diarrhea.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Anna M. Malinowska ◽  
Marcin Schmidt ◽  
Malgorzata Majcher ◽  
Hanna Przydatek ◽  
Marta Szaban ◽  
...  

AbstractSome species of gut bacteria produce short-chain fatty acids (SCFAs) from dietary fiber—mainly acetate, propionate, and butyrate. The composition of human gut microbiota is dependent on dietary intake and health status. The aim of this study was to assess the effect of diet and anthropometric parameters on the potential of gut microbiota to metabolize dietary fiber and produce SCFA.A group of 200 men and women aged 31 to 50 years old participated in the study. The diet was assessed using three-day dietary records and the dietary pattern was determined using score methods. The potential to utilize water-insoluble fiber was assessed by measuring the β-glucosidase enzymatic activity of dissolved feces. To estimate the potential to metabolize water-soluble dietary fiber, cultures containing feces and pectin were incubated under anaerobic conditions for 24 hours. The amounts of fiber, acetic acid, propionic acid, and butyric acid before and after incubation were measured.Pectin utilization correlated positively with the amount of energy intake from fat (r = 0.19) and with the intake of nuts and seeds (r = 0.17) and was negatively correlated with the amount of energy from complex carbohydrates (r = -0.16) and its sources, such as refined grain products (r = -0.15). The dietary pattern did not affect the potential of the gut microbiota to metabolize pectin, but did influence the potential to digest insoluble dietary fiber, as the subjects following the western dietary pattern had lower potential than those following the rational pattern. β-glucosidase activity correlated positively with the intake of dietary fiber (r = 0.19) and intake of its sources, such as fruits (r = 0.18), vegetables (r = 0.21), and nuts and seeds (r = 0.18); it correlated negatively with nonalcoholic beverage intake (r = -0.15) and sugar and honey intake (r = -0.16). The potential to synthesize acetic acid correlated negatively with dietary indices and dietary fiber intake (r = -0.18). The potential to synthesize propionic acid correlated negatively with hip and waist circumference (r = -0.14, -0.15, respectively). The potentials to synthesize both propionic and butyric acid were affected by the intake of nuts and seeds (r = 0.18, 0.21, respectively).Diet affects the potential of gut microbiota to utilize dietary fiber and to produce SCFAs. The impact of anthropometry parameters was only seen on the potential to synthesize propionic acid.


2018 ◽  
Vol 44 (1) ◽  
pp. 6 ◽  
Author(s):  
Marcelo Dal Pozzo ◽  
Julio Viegas ◽  
Gilberto Vilmar Kozloski ◽  
Cristiano Miguel Stefanello ◽  
Alisson Minozzo da Silveira ◽  
...  

Background: The addition of adsorbents in foods has been the strategy used by nutritionists to reduce the toxic effects of mycotoxins in animals. Mycotoxins are found in a range of foods and commonly they present variations in the chemical structure therefore, it has been appropriate to include adsorbents from different sources in the diet of ruminants. However, few researches were conducted in order to better understand the interaction of adsorbents on ruminal fermentation. Our objective in this study was to investigate the possible effects of two adsorbent products on bovine ruminal fermentation. One consists of 65% of β-glucan (β-glu), originating cell wall of Saccharomyces cerevisiae and used at a concentration of 1% and natural sodium montmorillonite (MMT) at a concentration of 5%.Materials, Methods & Results: The effects of β-glu adsorbents (1%) and MMC (5%) in culture medium that simulated ruminal fermentation were evaluated. Bottles, with a capacity of 120 mL, were used to be filled with substrate such as maize and ryegrass hay ground, nutrient solution (medium of Menke), liquid extracted rumen fistulated bovine and the two adsorbents evaluated, totaling 50 mL. The experiment was conducted with three treatments, named after: control (Cont), β-glu and MMT. In the control treatment adsorbents were not added. Six replicates were used for each treatment and two trials were conducted. One of the tests aimed to determine the fermentation kinetics by means of the gas production after 72 h’ incubation and quantifying the production of methane (CH4) at 48h. While another test aimed to quantify the production of short chain fatty acids (SCFA) - acetic, propionic and butyric acid - and the production of ammonia (NH3) in 24 h incubation. All assays were measured by gas chromatography. The highest total SCFA concentration was observed in β-glu treatment (67.71 mM) significantly superior to CONT (57.7 mM) treatment and MMT (53.28 mM), which was significantly lower than the β-glu treatment, but similar to CONT. The average representation (%) of acetic acid for the treatment MMT (62.9%) was significantly higher than the β-glu treatment (61.0%). The average proportions of propionic acid were similar between treatments, while the average representation (%) of butyric acid production was significantly higher for the β-glu treatment (13.1%) compared to CONT treatments (11.3%) and MMT (11.4%). The amount of NH3 was significantly reduced in MMT (9.6 mM) treatment compared to β-glu treatments (12.2 mM) and CONT (11.3 mM). In another test, the greater volume of gas (mL) was produced by β-glu treatment (103.4 mL), which was significantly greater than the treatments CONT (89.0 mL) and MMT (91.6 mL). The lag time, i.e. the time taken by the bacteria inoculum to develop lead-through in the substrate, in the MMT treatment took 6.2 h, slowing significantly compared to CONT treatments (4.8 h) and β Glu (4.33 h). The concentration of CH4 was significantly lower in MMT treatment (33.0%) compared to the CONT treatments (36.3%) and β-glu (35.68%).Discussion: The glucans which constitute the main cell wall S. cerevisae are the β-glucans with β-1-3 and β-1,6 glycosidic bonds. The largest and most significant concentration of SCFA and gas volume in the β-glu treatment can be explained by the degradation of β-glucans by rumen bacteria. The possible reason of reduced concentration of methane (CH4) in samples collected during 48 h of incubation in MMT treatment stands on the reduction in symbiotic activity of methanogenic bacteria and protozoa. Also, the possible reason of reduction in the concentration of ammonia (NH3) in MMT treatment could be associated to damage on protozoa with proteolytic activity. Our results showed that the amount of montmorillonite in rumen fluid influenced negatively the fermentative activity, therefore, delaying the colonization of bacteria in rumen substrate composed of maize and ryegrass hay. Moreover, the use of β-glu (1%) significantly increased the amount of short chain fatty acids such as, acetic acid and butyric acid, with the exception of propionic acid.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiling Gao ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Wenjun Bao ◽  
Shikun Cheng ◽  
...  

Abstract Background Volatile fatty acids (VFAs) can be effective and promising alternate carbon sources for microbial lipid production by a few oleaginous yeasts. However, the severe inhibitory effect of high-content (> 10 g/L) VFAs on these yeasts has impeded the production of high lipid yields and their large-scale application. Slightly acidic conditions have been commonly adopted because they have been considered favorable to oleaginous yeast cultivation. However, the acidic pH environment further aggravates this inhibition because VFAs appear largely in an undissociated form under this condition. Alkaline conditions likely alleviate the severe inhibition of high-content VFAs by significantly increasing the dissociation degree of VFAs. This hypothesis should be verified through a systematic research. Results The combined effects of high acetic acid concentrations and alkaline conditions on VFA utilization, cell growth, and lipid accumulation of Yarrowia lipolytica were systematically investigated through batch cultures of Y. lipolytica by using high concentrations (30–110 g/L) of acetic acid as a carbon source at an initial pH ranging from 6 to 10. An initial pH of 8 was determined as optimal. The highest biomass and lipid production (37.14 and 10.11 g/L) were obtained with 70 g/L acetic acid, whereas cultures with > 70 g/L acetic acid had decreased biomass and lipid yield due to excessive anion accumulation. Feasibilities on high-content propionic acid, butyric acid, and mixed VFAs were compared and evaluated. Results indicated that YX/S and YL/S of cultures on butyric acid (0.570, 0.144) were comparable with those on acetic acid (0.578, 0.160) under alkaline conditions. The performance on propionic acid was much inferior to that on other acids. Mixed VFAs were more beneficial to fast adaptation and lipid production than single types of VFA. Furthermore, cultures on food waste (FW) and fruit and vegetable waste (FVW) fermentate were carried out and lipid production was effectively improved under this alkaline condition. The highest biomass and lipid production on FW fermentate reached 14.65 g/L (YX/S: 0.414) and 3.20 g/L (YL/S: 0.091) with a lipid content of 21.86%, respectively. By comparison, the highest biomass and lipid production on FVW fermentate were 11.84 g/L (YX/S: 0.534) and 3.08 g/L (YL/S: 0.139), respectively, with a lipid content of 26.02%. Conclusions This study assumed and verified that alkaline conditions (optimal pH 8) could effectively alleviate the lethal effect of high-content VFA on Y. lipolytica and significantly improve biomass and lipid production. These results could provide a new cultivation strategy to achieve simple utilizations of high-content VFAs and increase lipid production. Feasibilities on FW and FVW-derived VFAs were evaluated, and meaningful information was provided for practical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qian Fang ◽  
Sinmin Ji ◽  
Dingwu Huang ◽  
Zhouyue Huang ◽  
Zilong Huang ◽  
...  

This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment.


2002 ◽  
Vol 87 (S2) ◽  
pp. S163-S168 ◽  
Author(s):  
M. Nyman

The bulking index (i.e. the increase in faecal fresh weight in gram per gram indigestible carbohydrate ingested) with oligofructose and inulin is similar to that produced with other easily fermented fibres such as pectins and gums. Most studies in man have been performed at a level of 15 g/d and more investigations on lower intakes are needed to appoint the least intake for an effect. Concerning short-chain fatty acids (SCFA) most studies have been using oligofructose and points at an increased butyric acid formation in the caecum of rats. In one study on rats with inulin high caecal proportions of propionic acid were obtained. As inulin has a higher molecular weight than oligofructose it might be speculated if this could be a reason to the different SCFA-profile formed. No effects on faecal concentrations of SCFA in humans have been revealed with inulin and oligofructose, which neither is expected as most of the SCFA formed during the fermentation already has been absorbed or utilized by the colonic mucosa.


BMC Neurology ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Gang Wu ◽  
Zhengli Jiang ◽  
Yaling Pu ◽  
Shiyong Chen ◽  
Tingling Wang ◽  
...  

Abstract Background Parkinson’s disease (PD) is associated with enteric nervous system dysfunction and gut microbiota dysbiosis. Short-chain fatty acids (SCFAs), derived from gut microbiota, are supposed to anticipate PD pathogenesis via the pathway of spinal cord and vagal nerve or the circulatory system. However, the serum concentration of SCFAs in PD patients is poorly known. This study aims to investigate the exact level of SCFAs in PD patients and its correlation with Parkinson’s symptoms. Methods 50 PD patients and 50 healthy controls were recruited, and their demographic and clinical characteristics were collected. The serum concentration of SCFAs was detected using a gas chromatography-mass spectrometer. SCFAs were compared between PD and control groups. The correlation between serum SCFAs and Parkinson’s symptoms and the potential effects of medications on the serum SCFAs was analyzed. Results Serum propionic acid, butyric acid and caproic acid were lower, while heptanoic acid was higher in PD patients than in control subjects. However, only the serum level of propionic acid was correlated with Unified Parkinson’s Disease Rating Scale (UPDRs) part III score (R = -0.365, P = 0.009), Mini-mental State Examination (MMSE) score (R = -0.416, P = 0.003), and Hamilton Depression Scale (HAMD) score (R = 0.306, P = 0.03). There was no correlation between other serum SCFAs and motor complications. The use of trihexyphenidyl or tizanidine increased the serum concentration of propionic acid. Conclusions Serum SCFAs are altered in PD patients, and the decrease of serum propionic acid level is correlated with motor symptoms, cognitive ability and non-depressed state. Thus, the gut microbial-derived SCFAs potentially affect Parkinson’s symptoms through the blood circulation. Propionic acid supplementation might ameliorate motor and non-motor symptoms of PD patients, although clinical trials are needed to test this hypothesis.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Benjamin Seethaler ◽  
Jacqueline Beutel ◽  
Marie Kogel ◽  
Maryam Basrai ◽  
Jens Walter ◽  
...  

AbstractBackground: A number of small intervention studies suggested that a Mediterranean diet (MedD) and physical activity can lower the risk for breast cancer. LIBRE is the first large multicenter RCT to test the effect of these lifestyle factors on the incidence of breast cancer in women at risk because of BRCA mutations(1). LIBRE also offers to unravel underlying mechanisms such as the role of short-chain fatty acids (SCFA) for beneficial effects of such lifestyle interventions.Methods: We examined the effect of the lifestyle intervention on the production of SCFA measured in feces by gas chromatography. From the ongoing LIBRE trial we included all complete datasets (171 women; mean age 44 ± 11 years). Both women with and without previous breast cancer diagnosis were recruited (diseased; non-diseased). The participants were randomized into an intervention group (IG) trained for MedD and physical activity, and a usual care control group (CG). Adherence to the MedD was assessed at baseline and after 3 months (V1) using the validated Mediterranean Diet Adherence Screener (MEDAS) and the EPIC food frequency questionnaire (FFQ).Results: At baseline there was no difference in SCFA levels between the groups. In the IG the MEDAS score increased substantially by 2.5 points (p < 0.001), in the CG only mildly by 0.4 points (p < 0.05). Correspondingly, the intake of fibers increased solely in the IG. In the course of the study the amount of caproic acid decreased in the control group (p < 0.001). At V1 non-diseased women showed higher amounts of acetic acid (p = 0.042), n-butyric acid (p = 0.023), n-valeric acid (p = 0.018) and iso-valeric acid (p = 0.031). There were several correlations between the intake of different fibers and fecal SCFA. For example, the sum of poly- and oligosaccharides correlated with acetic acid (p = 0.001; r = 0.316), propionic acid (p = 0.034; r = 0,251), n-butyric acid (p = 0.010; r = 0.316) and iso-valeric acid (p = 0.012; r = 0.306). There was no correlation between the MEDAS and SCFA.Discussion: A lifestyle change towards a MedD and increased physical activity did not change the levels of SCFA in feces, although an increase of fiber intake was documented in the IG. To further analyze SCFA metabolism in this target population, gut microbiota composition and function (metabolites) are currently analyzed.


1973 ◽  
Vol 17 (2) ◽  
pp. 209-212 ◽  
Author(s):  
P. R. Lawrence ◽  
P. C. Thomas

SUMMARYComplete C, N and energy balances were carried out on two mature sheep receiving a basal diet of pelleted hay plus continuous intraruminal infusions of either water or 400 kcal/day of propionic acid, butyric acid or a mixture of acetic acid and sodium acetate, for periods of 1 to 5 weeks. The efficiency of utilization for maintenance plus fattening of the basal diet and the basal diet supplemented with acetate, propionate or butyrate was 20·7 ± 1·0%, 28·3 ± 1·5%, 30·2 ± 0·5% and 31·3 ± 0·2%, respectively. The calculated efficiency of utilization for fattening (kf) of the infused energy sources was 69·9 ± 8·4%, 84·0 ± 3·4% and 86·0±2·0% for acetate, propionate and butyrate, respectively. In most instances kf did not vary with the length of the period of infusion but in one sheep there was an adverse response to the infusion of the acetate mixture, and during the first week of infusion kt was only 29·3%. During the third and fifth weeks of the infusion the corresponding values were 76±3% and 72±5%.


Sign in / Sign up

Export Citation Format

Share Document