scholarly journals An Unrecognized Fundamental Relationship between Neurotransmitters: Glutamate Protects against Catecholamine Oxidation

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1564
Author(s):  
Wenping Wang ◽  
Ximing Wu ◽  
Chung S. Yang ◽  
Jinsong Zhang

Neurotransmitter catecholamines (dopamine, epinephrine, and norepinephrine) are liable to undergo oxidation, which copper is deeply involved in. Catecholamine oxidation-derived neurotoxicity is recognized as a pivotal pathological mechanism in neurodegenerative diseases. Glutamate, as an excitatory neurotransmitter, is enriched in the brain at extremely high concentrations. However, the chemical biology relationship of these two classes of neurotransmitters remains largely unknown. In the present study, we assessed the influences of glutamate on the autoxidation of catecholamines, the copper- and copper-containing ceruloplasmin-mediated oxidation of catecholamines, the catecholamine-induced formation of quinoprotein, catecholamine/copper-induced hydroxyl radicals, and DNA damage in vitro. The results demonstrate that glutamate, at a physiologically achievable molar ratio of glutamate/catecholamines, has a pronounced inhibitory effect on catecholamine oxidation, catecholamine oxidation-evoked hydroxyl radicals, quinoprotein, and DNA damage. The protective mechanism of glutamate against catecholamine oxidation could be attributed to its restriction of the redox activity of copper via chelation. This previously unrecognized link between glutamate, catecholamines, and copper suggests that neurodegenerative disorders may occur and develop once the built-in equilibrium is disrupted and brings new insight into developing more effective prevention and treatment strategies for neurodegenerative diseases.

2021 ◽  
Author(s):  
Liza Douiev ◽  
Chaya Miller ◽  
Hadar Benyamini ◽  
Ann Saada ◽  
Bassam Abu-Libdeh

Abstract Cytochrome- c- oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4), who presented with bone-marrow failure, genomic instability and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated reduced proliferation and premature senescence in this patient’s fibroblasts and in COX4-1 knockdown cells. Accumulative DNA damage coincided primarily with proliferative cells, indicating replicative stress. Expression analysis implicated DNA damage response which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. Interestingly, our in-vitro findings recapitulate the patient’s presentation and present status. Thus, we suggest that the premature senescence, resulting from accumulative DNA damage in COX4-1 deficiency is a protective mechanism to avoid malignant transformation in a similar manner to what was reported for FA and other “accelerated aging diseases”.


Author(s):  
Manorama Patri

Benzo[a]pyrene (B[a]P), is a family member of polycyclic aromatic hydrocarbons and a widespread environmental pollutant and neurotoxicant that contribute to the development of cancer. Microtubules are polymers of tubulin that form part of the cytoskeleton and target for anticancer drugs. Furthermore, NPY significantly increased the percentage of cells in S and G2/M phases. However, little is known about the specific role of NPY in proliferation and the underlying protective mechanism remains unclear. Hence, the aim of this work was to investigate the effect of B[a]P on SH-SY5Y neuroblastoma cells and to explore the potential mechanism for alteration of tubulin-microtubule equilibrium causing mitotic arrest and NPY expression. The present findings showed B[a]P treatment significantly increase number of SH-SY5Y cells in S and G2/M phase as compared to G1 phase and provokes cell cycle arrest that correlated with significant decrease in G0/G1 cells. Immunofluorescence study showed significantly distorted tubulin arrangement from metaphasic plate in formation of bipolar mitotic spindle apparatus. Further, higher doses of B[a]P treatment lead to chromosomal abnormalities accompanied by DNA damage due ROS causing oxidative stress showing significant decrease in tubulin protein around spindle. The results of present study demonstrated that NPY exerts a proliferative and protective effect on B[a]P-induced oxidative stress in a dose-dependent manner in vitro and importantly, these effects may be mediated via mitotic arrest and involved in spindle arrangement during cell division. Our findings addresses a novel pathological outcomes of B[a]P-induced NPY expression by oxidative stress through spindle abnormalities leading to microtubule disruption.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Aristidis S. Veskoukis ◽  
Antonios Kyparos ◽  
Michalis G. Nikolaidis ◽  
Dimitrios Stagos ◽  
Nektarios Aligiannis ◽  
...  

Fruits, such as grapes, are essential food of the Mediterranean diet. Grape extracts have potent antioxidant and chemopreventive propertiesin vitro. Numerous studies have examined the effects of plant extract administration on redox status at rest in animals and humans but their results are controversial. However, there are no studies comparing thein vitroandin vivoeffects of plant extracts on oxidative stress using exercise as an oxidant stimulus. Thus, the aim of this study was to investigate whether a polyphenol-rich grape pomace extract of theVitis viniferaspecies possessesin vitroantioxidant properties and to examine whether these properties apply in anin vivomodel at rest and during exercise. Our findings indicate that the tested extract exhibits potentin vitroantioxidant properties because it scavenges the DPPH•and ABTS•+radicals and inhibits DNA damage induced by peroxyl and hydroxyl radicals. Administration of the extract in rats generally induced oxidative stress at rest and after exercise whereas exercise performance was not affected. Our findings suggest that the grape pomace extract does not behave with the same wayin vitroandin vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sang Min Lee ◽  
Eun Jin Yang ◽  
Sun-Mi Choi ◽  
Seon Hwy Kim ◽  
Myung Gi Baek ◽  
...  

Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis bothin vivoandin vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


2008 ◽  
Vol 59 (6) ◽  
Author(s):  
Codruta Soica ◽  
Cristina A. Dehelean ◽  
Valentin Ordodi ◽  
Diana Antal ◽  
Vicentiu Vlaia

Birch bark contains important pentacyclic triterpens that determine an anticancer, anti-inflammatory and antiviral activity. The compounds can be extracted by simple procedures with organic solvents. The major problem of this type of triterpens is their low water solubility which can be increased by physical procedures like cyclodextrin complexation. The aim of present study was to analyse the products between birch bark extract and hydroxypropyl-g -cyclodextrin. Hydroxypropyl-g -cyclodextrin (HPGCD) was used as a host to improve its solubility in water, via inclusion complex formation. In order to obtain the inclusion complexes, 1:2 molar ratio and two preparation methods (physical mixing, kneading) were used. The inclusion complexes were analyzed by in vitro dissolution tests, thermal analysis and X-ray diffraction.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document