scholarly journals High Redox Status as the Basis for Heavy Metal Tolerance of Sesuvium portulacastrum L. Inhabiting Contaminated Soil in Jeddah, Saudi Arabia

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Emad A. Alsherif ◽  
Turki M. Al-Shaikh ◽  
Omar Almaghrabi ◽  
Hamada AbdElgawad

Because sewage sludge is contaminated with heavy metals, its disposal in the soil may pose risks to the ecosystem. Thus, heavy metal remediation is necessary to reduce the associated risks. The goal of this research is to introduce a heavy metal resistant species and to assess its phytoremediation, oxidative damage markers and stress tolerance mechanisms. To this end, field research was done to compare the vegetation of polluted sites to that of a healthy site. We found 42 plant species identified in the study, Sesuvium portulacastrum L. was chosen because of its high relative density (10.3) and maximum frequency (100 percent) in the most contaminated areas. In particular, S. portulacastrum plants were characterized by strong Cu, Ni, and As uptake. At the organ level, to control growth reduction and oxidase damage, particularly in roots, increased detoxification (e.g., metallothionein, phytochelatins) and antioxidants mechanisms (e.g., tocopherols, glutathione, peroxidases). On the other hand, flavonoids content and the activity of glutathione-S transferase, glutathione reductase and dehydroascorbate reductase were increased manly in the shoots. These biochemical markers can be applied to select tolerance plant species grown under complex heavy metal contamination. Our findings also introduced S. portulacastrum to reduce soil contamination0associated risks, making the land resource available for agricultural production.

2020 ◽  
Vol 12 (21) ◽  
pp. 9056 ◽  
Author(s):  
Farheen Nazli ◽  
Adnan Mustafa ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Moazzam Jamil ◽  
...  

Water scarcity and high input costs have compelled farmers to use untreated wastewater and industrial effluents to increase profitability of their farms. Normally, these effluents improve crop productivity by serving as carbon source for microbes, providing nutrients to plants and microbes, and improving soil physicochemical and biological properties. They, however, may also contain significant concentrations of potential heavy metals, the main inorganic pollutants affecting plant systems, in addition to soil deterioration. The continuous use of untreated industrial wastes and agrochemicals may lead to accumulation of phytotoxic concentration of heavy metals in soils. Phytotoxic concentration of heavy metals in soils has been reported in Pakistan along the road sides and around metropolitan areas, which may cause its higher accumulation in edible plant parts. A number of bacterial that can induce heavy metal tolerance in plants due to their ability to produce phytohormones strains have been reported. Inoculation of crop plants with these microbes can help to improve their growth and productivity under normal, as well as stressed, conditions. This review reports the recent developments in heavy metal pollution as one of the major inorganic sources, the response of plants to these contaminants, and heavy metal stress mitigation strategies. We have also summarized the exogenous application of phytohormones and, more importantly, the use of phytohormone-producing, heavy metal-tolerant rhizobacteria as one of the recent tools to deal with heavy metal contamination and improvement in productivity of agricultural systems.


2012 ◽  
Vol 5 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Hai-Yan Li ◽  
Dong-Wei Li ◽  
Cai-Mei He ◽  
Zuo-Ping Zhou ◽  
Tao Mei ◽  
...  

2011 ◽  
Vol 74 (8) ◽  
pp. 2284-2291 ◽  
Author(s):  
Poonam Ahlawat Sainger ◽  
Rajesh Dhankhar ◽  
Manish Sainger ◽  
Anubha Kaushik ◽  
Rana Pratap Singh

HortScience ◽  
1998 ◽  
Vol 33 (2) ◽  
pp. 206d-206 ◽  
Author(s):  
Ekaterina A. Jeliazkova ◽  
Valtcho D. Jeliazkov ◽  
Lyle E. Craker ◽  
Baoshan Xing

Phytoremediation has been suggested as a solution to heavy metal—polluted soils, but the choices of suitable plant species for phytoremediation have been limited. Medicinal and aromatic plants appear to be excellent selections for these plantings, since these plants are grown for economically valuable secondary products (essential oils), not for food or feed. Preliminary research indicates that heavy metals are not accumulated in essential oils, permitting the oil to be used commercially. Productivity of some, but not all aromatic plants was reduced, however, by the heavy metals. The objective of our experiment was to distinguish the mechanism of heavy metal tolerance of plants using germinating seeds of medicinal and aromatic plant species. Seeds from medicinal and aromatic plants were germinated in solutions with selected levels of heavy metals (cadmium at 6 and 10 (μg·L-1; copper at 60 and 150 μg·L-1; lead at 100 and 500 μg·L-1; zinc at 400 and 800 μg·L-1) and in distilled water. Tests on Anethum graveolens L., Carum carvi L., Cuminum cyminum L., Foeniculum vulgare Mill., Pimpinella anisum L., Ocimum basilicum L., and the hyperaccumulator species Brassica juncea L. and Alyssum bertolonii established that different plant species reacted in different ways to the heavy metals. For example, cadmium did not decrease seed germination of Alyssum, O. basilicum, and B. juncea compared with germination in water but did decrease germination of C. cyminum. Lead did not affect germination of A. bertolonii and B. juncea as compared with water but did negatively affect germination of P. anisum, F. vulgare, and C. cyminum. Except for B. juncea, F. vulgare, and C. cyminum, copper had a negative effect on germination. Zinc decreased germination in all tested species except B. juncea.


2012 ◽  
Vol 518-523 ◽  
pp. 490-493 ◽  
Author(s):  
Guang Xu Liu ◽  
Xue Liang Chai ◽  
Yan Qing Shao ◽  
Hong Xi Wu

Blood clam, Tegillarca granosa, habit in near-shore muddy sediments facing increasing danger of heavy metal contamination. In order to assess the acute toxicity of heavy metals on T. granosa, short term lethal concentration (LC50) of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were determined, symptoms of death and organic lesions were illustrated. With relative high LC50 values obtained, T. granosa showed great heavy metal tolerance indicates adaptations to habitat environment. T. granosa died in acute Cd exposure showed specific death symptom with foot extended outside of the tightly closed shells. In this study, different metals led to different organic lesions. Dark red erosive and inflamed gills were observed for T. granosa exposed to acute Cu and Pb, respectively. Inflamed gonad and foot, and contracted mantle were observed for Cd and Zn exposure trials, respectively. The results of this study may provide knowledge to assist in heavy metal pollution bio-monitoring and quick diagnosis of massive death incidence.


2021 ◽  
Vol 13 (19) ◽  
pp. 10749
Author(s):  
Khadijah Nabilah Mohd Zahri ◽  
Claudio Gomez-Fuentes ◽  
Suriana Sabri ◽  
Azham Zulkharnain ◽  
Khalilah Abdul Khalil ◽  
...  

Heavy metal contamination is accidentally becoming prevalent in Antarctica, one of the world’s most pristine regions. Anthropogenic as well as natural causes can result in heavy metal contamination. Each heavy metal has a different toxic effect on various microorganisms and species, which can interfere with other pollutant bioremediation processes. This study focused on the effect of co-contaminant heavy metals on waste canola oil (WCO) biodegradation by the BS14 bacterial community collected from Antarctic soil. The toxicity of different heavy metals in 1 ppm of concentration to the WCO-degrading bacteria was evaluated and further analyzed using half maximal inhibition concentration (IC50) and effective concentration (EC50) tests. The results obtained indicated that Ag and Hg significantly impeded bacterial growth and degradation of WCO, while interestingly, Cr, As, and Pb had the opposite effect. Meanwhile, Cd, Al, Zn, Ni, Co, and Cu only slightly inhibited the bacterial community in WCO biodegradation. The IC50 values of Ag and Hg for WCO degradation were found to be 0.47 and 0.54 ppm, respectively. Meanwhile, Cr, As, and Pb were well-tolerated and induced bacterial growth and WCO degradation, resulting in the EC50 values of 3.00, 23.80, and 28.98 ppm, respectively. The ability of the BS14 community to tolerate heavy metals while biodegrading WCO in low-temperature conditions was successfully confirmed, which is a crucial aspect in biodegrading oil due to the co-contamination of oil and heavy metals that can occur simultaneously, and at the same time it can be applied in heavy metal-contaminated areas.


2017 ◽  
Vol 18 (6) ◽  
pp. 2305-2317 ◽  
Author(s):  
Javier Rodríguez-Bocanegra ◽  
Núria Roca ◽  
Anna Febrero ◽  
Jordi Bort

Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.


Sign in / Sign up

Export Citation Format

Share Document