scholarly journals Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity

Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 91 ◽  
Author(s):  
Elena Gianchecchi ◽  
Alessandra Fierabracci

In recent years, the interest in natural compounds exerting immunoregulatory effects has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant, immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative, pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important consequences for the health of the patients affected. The aim of the present review is to focus on the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.

2021 ◽  
Vol 28 ◽  
Author(s):  
Jacopo Troisi ◽  
Giorgia Venutolo ◽  
Concetta Terracciano ◽  
Matteo Delli Carri ◽  
Simone Di Micco ◽  
...  

Background: The involvement of intercellular tight junctions and, in particular, the modulation of their competency by the zonulin pathway with a subsequent increase in epithelial and endothelial permeability, has been described in several chronic and acute inflammatory diseases. In this scenario, Larazotide, a zonulin antagonist, could be employed as a viable therapeutic strategy. Objective: The present review aims to describe recent research and current observations about zonulin involvement in several diseases and the use of its inhibitor Larazotide for their treatment. Methods: A systematic search was conducted on PubMed and Google Scholar, resulting in 209 publications obtained with the following search query: “Larazotide,” “Larazotide acetate,” “AT-1001,” “FZI/0” and “INN-202.” After careful examination, some publications were removed from consideration because they were either not in English or were not directly related to Larazotide. Results: The obtained publications were subdivided according to Larazotide’s mechanism of action and different diseases: celiac disease, type 1 diabetes, other autoimmune diseases, inflammatory bowel disease, Kawasaki disease, respiratory (infective and/or non-infective) diseases, and other. Conclusions: A substantial role of zonulin in many chronic and acute inflammatory diseases has been demonstrated in both in vivo and in vitro, indicating the possible efficacy of a Larazotide treatment. Moreover, new possible molecular targets for this molecule have also been demonstrated.


Author(s):  
Marwa E. Atya ◽  
Amr El-Hawiet ◽  
Mohamed A. Alyeldeen ◽  
Doaa A. Ghareeb ◽  
Mohamed M. Abdel-Daim ◽  
...  

2005 ◽  
Vol 25 (5) ◽  
pp. 2000-2013 ◽  
Author(s):  
Niklas Finnberg ◽  
Joshua J. Gruber ◽  
Peiwen Fei ◽  
Dorothea Rudolph ◽  
Anka Bric ◽  
...  

ABSTRACT DR5 (also called TRAIL receptor 2 and KILLER) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (also called TRAIL and Apo2 ligand). DR5 is a transcriptional target of p53, and its overexpression induces cell death in vitro. However, the in vivo biology of DR5 has remained largely unexplored. To better understand the role of DR5 in development and in adult tissues, we have created a knockout mouse lacking DR5. This mouse is viable and develops normally with the exception of having an enlarged thymus. We show that DR5 is not expressed in developing embryos but is present in the decidua and chorion early in development. DR5-null mouse embryo fibroblasts expressing E1A are resistant to treatment with TRAIL, suggesting that DR5 may be the primary proapoptotic receptor for TRAIL in the mouse. When exposed to ionizing radiation, DR5-null tissues exhibit reduced amounts of apoptosis compared to wild-type thymus, spleen, Peyer's patches, and the white matter of the brain. In the ileum, colon, and stomach, DR5 deficiency was associated with a subtle phenotype of radiation-induced cell death. These results indicate that DR5 has a limited role during embryogenesis and early stages of development but plays an organ-specific role in the response to DNA-damaging stimuli.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ilaria Giusti ◽  
Vincenza Dolo

Prostate cancer (PCa) is the most common cancer—excluding skin tumors—in men older than 50 years of age. Over time, the ability to diagnose PCa has improved considerably, mainly due to the introduction of prostate-specific antigen (PSA) in the clinical routine. However, it is important to take into account that although PSA is a highly organ-specific marker, it is not cancer-specific. This shortcoming suggests the need to find new and more specific molecular markers. Several emerging PCa biomarkers have been evaluated or are being assessed for their potential use. There is increasing interest in the prospective use of extracellular vesicles as specific markers; it is well known that the content of vesicles is dependent on their cellular origin and is strongly related to the stimulus that triggers the release of the vesicles. Consequently, the identification of a disease-specific molecule (protein, lipid or RNA) associated with vesicles could facilitate their use as novel biological markers. The present review describes severalin vitrostudies that demonstrate the role of vesicles in PCa progression and severalin vivostudies that highlight the potential use of vesicles as PCa biomarkers.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Carola T. Murphy ◽  
Kenneth Nally ◽  
Fergus Shanahan ◽  
Silvia Melgar

Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is associated with enhanced leukocyte infiltration to the gut, which is directly linked to the clinical aspects of these disorders. Thus, leukocyte trafficking is a major target for IBD therapy. Past and emerging techniques to study leukocyte trafficking bothin vitroandin vivohave expanded our knowledge of the leukocyte migration process and the role of inhibitors. Various strategies have been employed to target chemokine- and integrin-ligand interactions within the multistep adhesion cascade and the S1P/S1PR1 axis in leukocyte migration. Though there is an abundance of preclinical data demonstrating efficacy of leukocyte trafficking inhibitors, many have yet to be confirmed in clinical studies. Vigilance for toxicity and further research is required into this complex and emerging area of IBD therapy.


Author(s):  
Lei Lei ◽  
Jianan Zhang ◽  
Eric A. Decker ◽  
Guodong Zhang

Redox stress is a common feature of gut disorders such as colonic inflammation (inflammatory bowel disease or IBD) and colorectal cancer (CRC). This leads to increased colonic formation of lipid-derived electrophiles (LDEs) such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), trans, trans-2,4-decadienal (tt-DDE), and epoxyketooctadecenoic acid (EKODE). Recent research by us and others support that treatment with LDEs increases the severity of colitis and exacerbates the development of colon tumorigenesis in vitro and in vivo, supporting a critical role of these compounds in the pathogenesis of IBD and CRC. In this review, we will discuss the effects and mechanisms of LDEs on development of IBD and CRC and lifestyle factors, which could potentially affect tissue levels of LDEs to regulate IBD and CRC development.


Author(s):  
Ezra Kombo Osoro ◽  
Xiaojuan Du ◽  
Dong Liang ◽  
Xi Lan ◽  
Riaz Farooq ◽  
...  

The precise molecular mechanism of autophagy dysfunction in type 1 diabetes is not known. Herein, the role of programmed cell death 4 (PDCD4) in autophagy regulation in the pathogenesis of diabetic kidney disease (DKD) in vivo and in vitro was described. It was found that Pdcd4 mRNA and protein was upregulated in the streptozotocin (STZ)-induced DKD rats. In addition, a unilateral ureteral obstruction mouse model displayed an upregulation of PDCD4 in the disease group. kidney biopsy samples of human DKD patients showed an upregulation of PDCD4. Furthermore, western blotting of the STZ-induced DKD rat tissues displayed a low microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, as compared to the control. It was found that albumin overload in cultured PTEC could upregulate the expression of PDCD4 and p62, and decrease the expression of LC3-II and autophagy-related 5 (Atg5) proteins. The knockout of Pdcd4 in cultured PTECs could lessen albumin-induced dysfunctional autophagy as evidenced by the recovery of Atg5 and LC3-II protein. The forced expression of PDCD4 could further suppress the expression of crucial autophagy-related gene Atg5. Herein, endogenous PDCD4 was shown to promote proteinuria-induced dysfunctional autophagy by negatively regulating Atg5. PDCD4 might therefore be a potential therapeutic target in DKD.


2000 ◽  
Vol 74 (3) ◽  
pp. 1094-1100 ◽  
Author(s):  
Joshua T. Bartoe ◽  
Björn Albrecht ◽  
Nathaniel D. Collins ◽  
Michael D. Robek ◽  
Lee Ratner ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is associated with a variety of immune-mediated disorders. The role of four open reading frames (ORFs), located between env and the 3′ long terminal repeat of HTLV-1, in mediating disease is not entirely clear. By differential splicing, ORF II encodes two proteins, p13II and p30II, both of which have not been functionally defined. p13II localizes to mitochondria and may alter the configuration of the tubular network of this cellular organelle. p30II localizes to the nucleolus and shares homology with the transcription factors Oct-1 and -2, Pit-1, and POU-M1. Both p13II and p30II are dispensable for infection and immortalization of primary human and rabbit lymphocytes in vitro. To test the role of ORF II gene products in vivo, we inoculated rabbits with lethally irradiated cell lines expressing the wild-type molecular clone of HTLV-1 (ACH.1) or a clone containing selected mutations in ORF II (ACH.30/13.1). ACH.1-inoculated animals maintained higher HTLV-1-specific antibody titers than animals inoculated with ACH.30/13.1. Viral p19 antigen was transiently detected in ex vivo cultures of peripheral blood mononuclear cells (PBMC) from only two ACH.30/13.1-inoculated rabbits, while PBMC cultures from all ACH.1-inoculated rabbits routinely produced p19 antigen. In only three of six animals exposed to the ACH.p30II/p13IIclone could provirus be consistently PCR amplified from extracted PBMC DNA and quantitative competitive PCR showed the proviral loads in PBMC from ACH.p30II/p13II-infected rabbits to be dramatically lower than the proviral loads in rabbits exposed to ACH. Our data indicate selected mutations in pX ORF II diminish the ability of HTLV-1 to maintain high viral loads in vivo and suggest an important function for p13II and p30II in viral pathogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Masahiko Ishida ◽  
Keisuke Kimura ◽  
Haruki Sugisawa ◽  
Akiko Kishikawa ◽  
...  

Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression bothin vivoandin vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.


Sign in / Sign up

Export Citation Format

Share Document