scholarly journals Antioxidants as Molecular Probes: Structurally Novel Dihydro-m-Terphenyls as Turn-On Fluorescence Chemodosimeters for Biologically Relevant Oxidants

Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 605
Author(s):  
Víctor González-Ruiz ◽  
Jegathalaprathaban Rajesh ◽  
Ana I. Olives ◽  
Damiano Rocchi ◽  
Jorge Gómez-Carpintero ◽  
...  

One interesting aspect of antioxidant organic molecules is their use as probes for the detection and quantitation of biologically relevant reactive oxidant species (ROS). In this context, a small library of dihydroterphenyl derivatives has been synthesised and studied as fluorescent chemodosimeters for detecting reactive oxygen species and hypochlorite. The fluorescence quantum yields of these molecules are negligible, while the corresponding aromatized compounds formed upon oxidation show moderate to high native fluorescence, depending on their structures. The fluorescence signal is quickly developed in the presence of trace amounts of the probe and the analytes in acetonitrile media at room temperature, with good analytical figures. ROS detection in aqueous media required incubation at 37 °C in the presence of horseradish peroxidase, and was applied to glucose quantitation by coupling glucose oxidation by O2 to fluorescence detection of H2O2. The mild reaction conditions and sensitive fluorescent response lead us to propose dihydroterphenyls with an embedded anthranilate moiety as chemosensors/chemodosimeters for ROS detection.

Synlett ◽  
2017 ◽  
Vol 29 (03) ◽  
pp. 296-300 ◽  
Author(s):  
Ali Darehkordi ◽  
Fariba Rahmani ◽  
Mahin Ramezani ◽  
Alireza Bazmandegan-Shamili

A series of novel blue-light-emitting 2H-imidazo[5,1-a]isoquinolinium chloride derivatives were synthesized by the reaction of isoquinoline with trifluoroacetimidoyl chlorides and isocyanides in dry CH2Cl2 in excellent yields. Fluorescence studies showed that the compounds absorb UV radiation and then emit blue light at about 481 nm with moderate to good fluorescence quantum yields. These compounds also showed high Stokes shifts, and can be used to develop ­ultrasensitive fluorescent molecular probes to study a variety of biological events and processes.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4758
Author(s):  
Vitor A. S. Almodôvar ◽  
Augusto C. Tomé

Diketopyrrolo[3,4-c]pyrroles (DPP) are high-performance organic optoelectronic materials. They have applications in solar cells, fluorescent probes, bioimaging, photodynamic/photothermal therapy, and in many other areas. This article reports a convenient two-step synthesis of various DPP dyes from Pigment Red 254, an inexpensive commercial pigment. The synthesis includes a Suzuki–Miyaura cross-coupling reaction of a bis(4-chlorophenyl)DPP derivative with aryl and hetaryl boronic acids under mild reaction conditions. The new dyes show large Stokes shifts and high fluorescence quantum yields, important features for their potential use in technical and biological applications.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


Synthesis ◽  
2021 ◽  
Author(s):  
Xianglong Chu ◽  
Yadi Niu ◽  
Chen Ma ◽  
Xiaodong Wang ◽  
Yunliang Lin ◽  
...  

AbstractA rapid access to a series of N-heteroarene fluorophores has been developed on the basis of the palladium-catalyzed direct oxidative C–H/C–H coupling of imidazo[1,2-a]pyridines with thiophenes/furans. The photophysical properties–structure relationship was systematically investigated. The resulting N-heteroarene fluorophores present color-tunable emissions (λem: 431–507 nm in CH2Cl2) and high fluorescence quantum yields (up to 91% in CH2Cl2).


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2898
Author(s):  
Ilya S. Kritchenkov ◽  
Anastasia I. Solomatina ◽  
Daria O. Kozina ◽  
Vitaly V. Porsev ◽  
Victor V. Sokolov ◽  
...  

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C–benzothienyl-phenanthridine based cyclometalated ligand; N^N–pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters’ solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological “window of transparency”, NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0–2.3 μs under normoxia and 2.8–3.0 μs under hypoxia conditions) in complete agreement with the calibration curves obtained “in cuvette”. The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


2016 ◽  
Vol 12 ◽  
pp. 825-834 ◽  
Author(s):  
Andreea Petronela Diac ◽  
Ana-Maria Ţepeş ◽  
Albert Soran ◽  
Ion Grosu ◽  
Anamaria Terec ◽  
...  

New indeno[1,2-c]pyran-3-ones bearing different substituents at the pyran moiety were synthesized and their photophysical properties were investigated. In solution all compounds were found to be blue emitters and the trans isomers exhibited significantly higher fluorescence quantum yields (relative to 9,10-diphenylanthracene) as compared to the corresponding cis isomers. The solid-state fluorescence spectra revealed an important red shift of λmax due to intermolecular interactions in the lattice, along with an emission-band broadening, as compared to the solution fluorescence spectra.


2017 ◽  
Vol 8 (17) ◽  
pp. 2686-2692 ◽  
Author(s):  
Kun Li ◽  
Ganquan Jiang ◽  
Feng Zhou ◽  
Lishan Li ◽  
Zhengbiao Zhang ◽  
...  

The topological structure of cyclic-TPEn+1 (n = 1–6) induces odd–even effects on the Tg and AIE behavior, arising from the alternation of intermolecular interactions.


1986 ◽  
Vol 41 (11) ◽  
pp. 1311-1314 ◽  
Author(s):  
A. Balter ◽  
W. Nowak ◽  
P. Milart ◽  
J. Sepioł

Absorption and fluorescence properties, excited state lifetimes and fluorescence quantum yields were determined for a series of 3,5-diarylaminobenzene derivatives in solvents of different polarities. The role of the nitrile, methyl, phenyl and naphthyl substituents is discussed. Especially the steric effects on the spectroscopic behaviour of the investigated molecules are studied.


Sign in / Sign up

Export Citation Format

Share Document