scholarly journals Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 662 ◽  
Author(s):  
Maria Savyuk ◽  
Mikhail Krivonosov ◽  
Tatiana Mishchenko ◽  
Irina Gazaryan ◽  
Mikhail Ivanchenko ◽  
...  

A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μM and 15 μM neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μM, but not for 1 μM neuradapt. Network connectivity is better preserved with immediate treatment using 1 μM neuradapt than with 15 μM, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μM and functional activity at 15 μM. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuang Wu ◽  
Tiantian Yang ◽  
Kai Cen ◽  
Yihuai Zou ◽  
Xiaowei Shi ◽  
...  

Context. About 15 million people worldwide suffer strokes each year and 5 million people are left with permanent disabilities which is due to the loss of local blood supply to the brain, resulting in a neurologic deficit. Panax notoginseng (Bruk.) F. H. Chen (Araliaceae) is a traditional Chinese herbal medicine widely used in the treatment of cardio-cerebrovascular diseases. Objective. This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. Materials and Methods. Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. Results. PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. Conclusions. These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.


Author(s):  
C.F. Veloso ◽  
A.K. Machado ◽  
F.C. Cadoná ◽  
V.F. Azzolin ◽  
I.B.M. Cruz ◽  
...  

Background: Vincristine (VCR) is not a specific chemotherapeutic drug, responsible for cause several side effects. In this sense, many natural products have been studied to reduce this problem. Objetives: To examine the guarana neuroprotective effect in mice brain and cerebellum cells against vincristine (VCR) exposition. Design: An in vitro study was performed using mice brain and cerebellum mice in monolayer culture. First, cells were exposed to VCR (0.009 µM for 24 hours and 0.0007 µM for 72 hours) to measure the cytotoxicity effect. Also, the cellular effect of hydroalcoholic extract of guarana (10; 30; 100 and 300 μg/mL) was evaluated in the same cells in 24 and 72 hours. After that, cells were exposed to VCR and guarana extract to evaluate the neuroprotective effect of guarana. Measurements: Cell viability was analyzed by MTT, Free dsDNA and LHD Assays. Moreover, metabolism oxidative profile was evaluated by reactive oxygen species (ROS), lipoperoxidation (LPO) and catalase (CAT) levels through DCFH-DA, TBARS and Catalase Activity Assays, respectively. Results: Our findings revealed that VCR caused neuronal cytotoxicity by reducing cell viability and increasing ROS and LPO levels. On the other hand, guarana did not cause cell damage in none of tested concentrations. In addition, guarana exhibited a notable protective effect on brain and cerebellum cells exposed to VCR by increasing cell viability, stimulating CAT activity, reducing levels of ROS and LPO. Conclusions: In this sense, guaraná is a remarkable antioxidant fruit that could be a target in new therapies development to reduce VCR neurotoxicity.


2021 ◽  
Author(s):  
Rafaella Carvalho Rossato ◽  
Alessandro Eustaquio Campos Granato ◽  
Jessica Cristina Pinto ◽  
Carlos Dailton Guedes de Oliveira Moraes ◽  
Geisa Nogueira Salles ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is a type of dementia that affects millions of people. Although there is no cure, several study strategies seek to elucidate the mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze the neuroprotective effect of taurine on human neuroblastoma, using an in vitro experimental model of oxidative stress induced by hydrocortisone in the SH-SY5Y cell line as a characteristic model of AD. The violet crystal assay was used for cell viability and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). After pretreatment with taurine, the SH-SY5Y cell showed an improvement in cell viability in the face of oxidative stress and improved cell morphology. Thus, the treatment presented a neuroprotective effect.GRAPHICAL ABSTRACT


2010 ◽  
Vol 115 (1) ◽  
pp. 209-219 ◽  
Author(s):  
Jens Leander Johansen ◽  
Thomas Nikolaj Sager ◽  
Julie Lotharius ◽  
Louise Witten ◽  
Arne Mørk ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shu Ye ◽  
Biao Cai ◽  
Peng Zhou ◽  
Guoquan Wang ◽  
Huawu Gao ◽  
...  

Alzheimer’s disease (AD) is a complex neurodegenerative disease. It is a chronic, lethal disease in which brain function is severely impaired and neuronal damage is irreversible. Huang-Pu-Tong-Qiao (HPTQ), a formula from traditional Chinese medicine, has been used in the clinical treatment of AD for many years, with remarkable effects. However, the neuroprotective mechanisms of HPTQ in AD have not yet been investigated. In the present study, we used AD models in vivo and in vitro, to investigate both the neuroprotective effect of HPTQ water extracts (HPTQ-W) and the potential mechanisms of this action. For the in vivo study, after HPTQ intervention, the Morris water maze test was used to examine learning and memory in rats. Transmission electron microscopy and immunofluorescence methods were then used to investigate neuronal damage. For the in vitro experiments, rat primary hippocampal neurons were cultured and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Additionally, mRNA levels of CaM, CaMKK, CaMKIV, and tau were examined using qRT-PCR, and protein expression of CaM, CaMKK, p-CaMKIV, and p-tau were examined using western blot. In vivo, we revealed that HPTQ significantly improved learning and memory deficits and attenuated neuronal damage in the AD rat model. Furthermore, in vitro results showed that HPTQ significantly increased cell viability in the AD cell model. We also demonstrated that HPTQ significantly decreased the mRNA levels of CaM, CaMKK, CaMKIV, and tau and significantly decreased the protein expressions of CaM, CaMKK, p-CaMKIV, and p-tau. In conclusion, our results indicated that HPTQ improved cognition and ameliorated neuronal damage in AD models and implicated a reduction in tau phosphorylation caused by inhibition of the CaM-CaMKIV pathway as a possible mechanism.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1102
Author(s):  
Keti Zeka ◽  
Pasquale Marrazzo ◽  
Matteo Micucci ◽  
Ketan C. Ruparelia ◽  
Randolph R. J. Arroo ◽  
...  

The petals of the saffron crocus (Crocus sativus L.) are considered a waste material in saffron production, but may be a sustainable source of natural biologically active substances of nutraceutical interest. The aim of this work was to study the cardiovascular effects of kaempferol and crocin extracted from saffron petals. The antiarrhythmic, inotropic, and chronotropic effects of saffron petal extract (SPE), kaempferol, and crocin were evaluated through in vitro biological assays. The antioxidant activity of kaempferol and crocin was investigated through the 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) assay using rat cardiomyoblast cell line H9c2. The MTT assay was applied to assess the effects of kaempferol and crocin on cell viability. SPE showed weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on the ileum greater than on the aorta: EC50 = 0.66 mg/mL versus EC50 = 1.45 mg/mL. Kaempferol and crocin showed a selective negative inotropic activity. In addition, kaempferol decreased the contraction induced by KCl (80 mM) in guinea pig aortic and ileal strips, while crocin had no effect. Furthermore, following oxidative stress, both crocin and kaempferol decreased intracellular ROS formation and increased cell viability in a concentration-dependent manner. The results indicate that SPE, a by-product of saffron cultivation, may represent a good source of phytochemicals with a potential application in the prevention of cardiovascular diseases.


2006 ◽  
Vol 397 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Ya-Min Tian ◽  
David R. Mole ◽  
Peter J. Ratcliffe ◽  
Jonathan M. Gleadle

The heterodimeric transcription factor HIF (hypoxia-inducible factor) is central to the regulation of gene expression by oxygen. Three oxygen-dependent prolyl hydroxylase enzymes [PHD1 (prolyl hydroxylase domain 1), PHD2 and PHD3] control the abundance of HIF. In the presence of oxygen, they hydroxylate specific proline residues in HIF-α, allowing recognition by pVHL (von Hippel-Lindau protein) and subsequent ubiquitylation and proteasomal destruction. The precise roles and regulation of these enzymes are therefore of particular importance in understanding the physiological and pathological responses to hypoxia. In the present study, we define the existence of two species of PHD1 and provide evidence that they are generated by alternative translational initiation. We demonstrate that these alternative forms are both biologically active with similar HIF prolyl hydroxylase activity but that they differ in their responses to oestrogen, cell confluence and proteasomal inhibition. We show that the two PHD1 species are subject to proteolytic regulation but differ markedly in their protein stability. Though each isoform has the potential to interact with members of the Siah (seven in absentia homologue) ubiquitin ligase family, genetic studies indicated that other proteolytic mechanisms are responsible for control of stability under the conditions examined. The data define the existence of a further level of control in the pathway that regulates cellular responses to hypoxia.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jennifer Harre ◽  
Laura Heinkele ◽  
Melanie Steffens ◽  
Athanasia Warnecke ◽  
Thomas Lenarz ◽  
...  

Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.


2019 ◽  
Vol 13 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Andrey A. Poloznikov ◽  
Sergey V. Nikulin ◽  
Arpenik A. Zakhariants ◽  
Anna Y. Khristichenko ◽  
Dmitry M. Hushpulian ◽  
...  

Background: “Branched tail” oxyquinolines, and adaptaquin in particular, are potent HIF prolyl hydroxylase inhibitors showing promising results in in vivo hemorrhagic stroke models. The further improvement of the potency resulted in identification of a number of adaptaquin analogs. Early evaluation of toxicity and metabolism is desired right at the step of lead selection. Objective: The aim of the study is to characterize the toxicity and metabolism of adaptaquin and its new improved analogs. Method: Liver-on-a-chip technology with differentiated HepaRG cells followed by LC-MS detection of the studied compounds and metabolites of the P450 substrate-inhibitor panel for CYP2B6, CYP2C9, CYP2C19, and CYP3A4. Results: The optimized adaptaquin analogs show no toxicity up to a 100-fold increased range over EC50. The drugs are metabolized by CYP3A4 and CYP2B6 as shown with the use of the cytochrome P450 substrate-inhibitor panel designed and optimized for preclinical evaluation of drugs’ in vitro biotransformation on a 3D human histotypical cell model using “liver-on-a-chip” technology. Activation of CYP2B6 with the drugs tested has been observed. A scheme for adaptaquin oxidative conversion is proposed. Conclusion: The optimized adaptaquin analogs are suitable for further preclinical trials. Activation of CYP2B6 with adaptaquin and its variants points to a potential increase in Tylenol toxicity if administered together.


Sign in / Sign up

Export Citation Format

Share Document