scholarly journals Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1083 ◽  
Author(s):  
Luminita Capatina ◽  
Elena Todirascu-Ciornea ◽  
Edoardo Marco Napoli ◽  
Giuseppe Ruberto ◽  
Lucian Hritcu ◽  
...  

Thymus vulgaris L. is an aromatic herb used for medicinal purposes such as antimicrobial, spasmolytic, antioxidant, anti-inflammatory, antinociceptive, antitumor, and may have beneficial effects in the treatment of Alzheimer’s disease. The present study aimed to investigate whether Thymus vulgaris L. essential oil enhances cognitive function via the action on cholinergic neurons using scopolamine (Sco)-induced zebrafish (Danio rerio) model of memory impairments. Thymus vulgaris L. essential oil (TEO, 25, 150, and 300 µL/L) was administered by immersion to zebrafish once daily for 13 days, whereas memory impairment was induced by Sco (100 μM), a muscarinic receptor antagonist, delivered 30 min before behavioral tests. Spatial memory was assessed using the Y-maze test and novel object recognition test (NOR). Anxiety and depression were measured in the novel tank diving test (NTT). Gas Chromatograph-Mass Spectrometry (GC-MS) analysis was used to study the phytochemical composition of TEO. Acetylcholinesterase (AChE) activity and oxidative stress response in the brain of zebrafish were determined. TEO ameliorated Sco-induced increasing of AChE activity, amnesia, anxiety, and reduced the brain antioxidant capacity. These results suggest that TEO may have preventive and/or therapeutic potentials in the management of memory deficits and brain oxidative stress in zebrafish with amnesia.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3442
Author(s):  
Yaowared Chulikhit ◽  
Wichitsak Sukhano ◽  
Supawadee Daodee ◽  
Waraporn Putalun ◽  
Rakvajee Wongpradit ◽  
...  

The effects of the phytoestrogen-enriched plant Pueraria mirifica (PM) extract on ovari-ectomy (OVX)-induced cognitive impairment and hippocampal oxidative stress in mice were investigated. Daily treatment with PM and 17β-estradiol (E2) significantly elevated cognitive behavior as evaluated by using the Y maze test, the novel object recognition test (NORT), and the Morris water maze test (MWM), attenuated atrophic changes in the uterus and decreased serum 17β-estradiol levels. The treatments significantly ameliorated ovariectomy-induced oxidative stress in the hippocampus and serum by a decrease in malondialdehyde (MDA), an enhancement of superoxide dismutase, and catalase activity, including significantly down-regulated expression of IL-1β, IL-6 and TNF-α proinflammatory cytokines, while up-regulating expression of PI3K. The present results suggest that PM extract suppresses oxidative brain damage and dysfunctions in the hippocampal antioxidant system, including the neuroinflammatory system in OVX animals, thereby preventing OVX-induced cognitive impairment. The present results indicate that PM exerts beneficial effects on cognitive deficits for which menopause/ovariectomy have been implicated as risk factors.


2021 ◽  
Vol 22 (9) ◽  
pp. 4667
Author(s):  
Michaela Shishmanova-Doseva ◽  
Dimitrinka Atanasova ◽  
Yordanka Uzunova ◽  
Lyubka Yoanidu ◽  
Lyudmil Peychev ◽  
...  

Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1018
Author(s):  
Caitlyn A. Mullins ◽  
Ritchel B. Gannaban ◽  
Md Shahjalal Khan ◽  
Harsh Shah ◽  
Md Abu B. Siddik ◽  
...  

Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 620
Author(s):  
Seung Yeon Baek ◽  
Fu Yi Li ◽  
Da Hee Kim ◽  
Su Jin Kim ◽  
Mee Ree Kim

Enteromorpha prolifera, a green alga, has long been used in food diets as well as traditional remedies in East Asia. Our preliminary study demonstrated that an ethyl acetate extract of Enteromorpha prolifera (EAEP) exhibited the strongest antioxidant activity compared to ethanol or water extracts. Nonetheless, there has been no report on the effect of EAEP on memory impairment due to oxidative damage. This study investigated whether EAEP could attenuate memory deficits in an oxidative stress-induced mouse model. EAEP was orally administered (50 or 100 mg/kg body weight (b.w.)) to mice and then scopolamine was administered. The oral administration of EAEP at 100 mg/kg b.w. significantly restored memory impairments induced by scopolamine, as evaluated by the Morris water maze test, and the passive avoidance test. Further, EAEP upregulated the protein expression of BDNF, p-CREB, p-TrkB, and p-Akt. Moreover, EAEP downregulated the expression of amyloid-β, tau, and APP. The regulation of cholinergic marker enzyme activities and the protection of neuronal cells from oxidative stress-induced cell death in the brain of mice via the downregulation of amyloid-β and the upregulation of the BDNF/TrkB pathway by EAEP suggest its potential as a pharmaceutical candidate to prevent neurodegenerative diseases.


2020 ◽  
Vol 8 (3) ◽  
pp. 225-238
Author(s):  
Mona Navaei-Nigjeh ◽  
Marzieh Daniali ◽  
Mahban Rahimifard ◽  
Mohammad R. Khaksar

Background: Excessive use of diazinon, as an organophosphate pesticide (OP), contributes to cytotoxic and pathologic cellular damage and, in particular, oxidative stress. However, metal-oxide nanoparticles (NPs), such as cerium oxide (CeO2) and yttrium oxide (Y2O3), with the property of free radical scavenging demonstrated beneficial effects in the alleviation of oxidative stress biomarkers. Objective: The aims of this study include evaluating beneficial effects of CeO2 NPs, Y2O3 NPs, and their combination against diazinon-induced oxidative stress in different tissues of brain, heart, lung, kidney, liver, and spleen. Methods: Eight randomized groups of 6 adult male Wistar rats were formed. Each group of rats administered a different combination of diazinon, CeO2 and Y2O3 NPs daily and levels of oxidative stress markers, such as reactive oxygen species (ROS), lipid peroxidation (LPO), total thiol molecules (TTM) and total anti-oxidant power (TAP) and catalase enzyme, were measured after 2 weeks of the treatment. Results: Measurements of the mentioned markers in the brain, heart, lung, kidney, liver, and spleen showed that the administration of NPs could significantly alleviate the oxidative stress induced by diazinon. However, the findings of this study illustrated that the combination of both CeO2 and Y2O3 NPs led to a better reduction in oxidative stress markers. Conclusion: Sub-acute exposure of diazinon in rats led to increased levels of oxidative stress markers in pivotal tissues such as the brain, heart, lung, kidney, liver, and spleen. CeO2 and Y2O3 NPs neutralize the oxidative stress to compensate diazinon-induced tissue damages. Lay Summary: Organophosphate pesticides (OPs), which are mainly used for pest control, are responsible for the entry of pesticides into the human food cycle. Organophosphate such as diazinon increases the molecular biomarkers of oxidative stress inside the cells of vital tissues such as the heart, liver, lungs, etc. Metal oxide nanoparticles (NPs) such as cerium oxide (CeO2) and yitrium oxide (Y2O3) can have free radical scavenging potential under oxidative stress and through various mechanisms. Although these nanoparticles reduce oxidative stress, it should be borne in the design of the study that additional doses of these substances reverse the beneficial effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmed Montaser ◽  
Johanna Huttunen ◽  
Sherihan Abdelhamid Ibrahim ◽  
Kristiina M. Huttunen

Ferulic acid (FA) is a natural phenolic antioxidant, which can exert also several other beneficial effects to combat neuroinflammation and neurodegenerative diseases, such as Alzheimer’s disease. One of these properties is the inhibition of several enzymes and factors, such as β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), cyclooxygenases (COXs), lipoxygenases (LOXs), mammalian (or mechanistic) target for rapamycin (mTOR), and transcription factor NF-κB. We have previously synthesized three L-type amino acid transporter 1- (LAT1-) utilizing FA-derivatives with the aim to develop brain-targeted prodrugs of FA. In the present study, the cellular uptake and bioavailability of these FA-derivatives were evaluated in mouse primary astrocytic cell cultures together with their inhibitory effects towards BACE1, COX/LOX, mTOR, NF-κB, acetylcholinesterase (AChE), and oxidative stress. According to the results, all three FA-derivatives were taken up 200–600 times more effectively at 10 μM concentration into the astrocytes than FA, with one derivative having a high intracellular bioavailability (Kp,uu), particularly at low concentrations. Moreover, all of the derivatives were able to inhibit BACE1, COX/LOX, AChE, and oxidative stress measured as decreased cellular lipid peroxidation. Furthermore, one of the derivatives modified the total mTOR amount. Therefore, these derivatives have the potential to act as multifunctional compounds preventing β-amyloid accumulation as well as combating inflammation and reducing oxidative stress in the brain. Thus, this study shows that converting a parent drug into a transporter-utilizing derivative not only may increase its brain and cellular uptake, and bioavailability but can also broaden the spectrum of pharmacological effects elicited by the derivative.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Solomon Umukoro ◽  
Love Okoh ◽  
Sylvester C. Igweze ◽  
Abayomi M. Ajayi ◽  
Benneth Ben-Azu

AbstractObjectivesThe juice extract of Cyperus esculentus commonly known as tiger nuts (TINUT) is widely used for its numerous health promoting effects including alleviation of symptoms associated with neurological disorders. Herein, we investigated the influence of the aqueous extract of C. esculentus on cognitive disorder and the underlying changes in acetylcholinesterase (AChE) activity and oxidative stress biomarkers in mice exposed to scopolamine.MethodsC. esculentus (50–200 mg/kg) or saline (10 mL/kg) was given alone or with scopolamine 30 min after, to male Swiss mice (6/group) daily for seven days. We evaluated the cognitive performance using Y-maze and object recognition on day seven post-treatment. Brains of the animals were afterwards processed for spectrophotometric determination of AChE activity and contents of oxidative stress biomarkers (malondialdehyde [MDA], glutathione [GSH], catalase, superoxide dismutase and nitrite).ResultsThe extract improves cognitive function and also upturned scopolamine amnesia in mice. The extract markedly reduced brain AChE, MDA, and nitrite contents in mice injected with scopolamine (p<0.05). It also attenuated scopolamine-induced deregulated GSH contents and antioxidant enzymes in mouse brain.ConclusionsThe results of this study suggest that regular consumption of TINUT might offer beneficial effects in memory-related disorders.


Sign in / Sign up

Export Citation Format

Share Document