scholarly journals Towards Adaptive Multipath Managing: A Lightweight Path Management Mechanism to Aid Multihomed Mobile Computing Devices

2020 ◽  
Vol 10 (1) ◽  
pp. 380 ◽  
Author(s):  
Yuanlong Cao ◽  
Mario Collotta ◽  
Siyi Xu ◽  
Longjun Huang ◽  
Xueqiang Tao ◽  
...  

With the large scale deployment of multihomed mobile computing devices in today’s Internet, the Multipath TCP (MPTCP) is being considered as a preferred data transmission technology in the future Internet due to its promising features of bandwidth aggregation and multipath transmission. However, MPTCP is more likely to be vulnerable to the transmission quality differences of multiple paths, which cause a “hot-potato” out-of-order arrival of packets at the receiver side, and in the absence of a related approach to fix this issue, serious application level performance degradations will occur. In this paper, we proposes MPTCP-LM 3 , a Lightweight path Management Mechanism to aid Multihomed MPTCP based mobile computing devices towards efficient multipath data transmission. The goals of MPTCP-LM 3 are: (i) to offer MPTCP a promising path management mechanism, (ii) to reduce out-of-order data reception and protect against receiver buffer blocking, and (iii) to increase the throughput of mobile computing devices in a multihomed wireless environment. Simulations show that MPTCP-LM 3 outperforms the current MPTCP schemes in terms of performance and quality of service.

2018 ◽  
Vol 6 (3) ◽  
pp. 213-221
Author(s):  
Soo-Hwan Lee ◽  
You-Ho Kim ◽  
Sang-ahm Kim ◽  
Hyun-Ju Hwang ◽  
Yong-Woon Choi

2021 ◽  
Vol 54 (3) ◽  
pp. 1-33
Author(s):  
Blesson Varghese ◽  
Nan Wang ◽  
David Bermbach ◽  
Cheol-Ho Hong ◽  
Eyal De Lara ◽  
...  

Edge computing is the next Internet frontier that will leverage computing resources located near users, sensors, and data stores to provide more responsive services. Therefore, it is envisioned that a large-scale, geographically dispersed, and resource-rich distributed system will emerge and play a key role in the future Internet. However, given the loosely coupled nature of such complex systems, their operational conditions are expected to change significantly over time. In this context, the performance characteristics of such systems will need to be captured rapidly, which is referred to as performance benchmarking, for application deployment, resource orchestration, and adaptive decision-making. Edge performance benchmarking is a nascent research avenue that has started gaining momentum over the past five years. This article first reviews articles published over the past three decades to trace the history of performance benchmarking from tightly coupled to loosely coupled systems. It then systematically classifies previous research to identify the system under test, techniques analyzed, and benchmark runtime in edge performance benchmarking.


2013 ◽  
Vol 299 ◽  
pp. 130-134
Author(s):  
Li Wei ◽  
Da Zhi Deng

In recent years,china input in the construction of the network management is constantly increasing;information technology has improved continuously,but,making a variety of network security incidents occur frequently,due to the vulnerability of the computer network system inherent,a direct impact on national security and social and political stability. Because of the popularity of computers and large-scale development of the Internet, network security has been increasing as the theme. Reasonable safeguards against violations of resources; regular Internet user behavior and so on has been the public's expectations of future Internet. This paper described a stable method of getting telnet user’s account in development of network management based on telnet protocol.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2020 ◽  
Vol 3 (2) ◽  
pp. 128-139
Author(s):  
I Gusti Made Ngurah Desnanjaya ◽  
Mohammad Dwi Alfian

Wireless Sensor Network is a wireless network technology that includes sensor nodes and embedded systems. WSN has several advantages: it is cheaper for large-scale applications, can withstand extreme environments, and data transmission is relatively more stable. One of the WSN devices is nRF24L01+. Within the specifications given, the maximum communication distance is 1.1 km. However, the most effective distance for transmitting data in line of sight and non-line of sight is still unknown. Therefore, testing and analysis are needed so that the nRF24L01+ device can be used optimally for communication and data transmission. Through testing analysis on nRF24L01+ line of sight, Kuta beach location in Bali and non-line of sight on the STMIK STIKOM Indonesia campus. The effective communication distance of the nRF24L01+ module in line of sight is between 1 and 1000 meters. The distance of 1000 meters is the limit of the effective distance for sending data, and the packet loss rate is less than 15% which is included in the medium category. Meanwhile, in the non-line of sight, the effective distance of the nRF24L01+ communication module is 20 meters, and the packet loss is close to 15%, which is a moderate level limit. With the analysis module, nRF24L01+ can be a reference in determining the effective distance on WSN nRF24L01+ in determining remote control equipment data communication.


Author(s):  
B. Darsana ◽  
Karabi Konar

Current advances in portable devices, wireless technologies, and distributed systems have created a mobile computing environment that is characterized by a large scale of dynamism. Diversities in network connectivity, platform capability, and resource availability can significantly affect the application performance. Traditional middleware systems are not prepared to offer proper support for addressing the dynamic aspects of mobile systems. Modern distributed applications need a middleware that is capable of adapting to environment changes and that supports the required level of quality of service. This paper represents the experience of several research projects related to next generation middleware systems. We first indicate the major challenges in mobile computing systems and try to identify the main requirements for mobile middleware systems. The different categories of mobile middleware technologies are reviewed and their strength and weakness are analyzed.


Author(s):  
Lang Ruan ◽  
Jin Chen ◽  
Qiuju Guo ◽  
Xiaobo Zhang ◽  
Yuli Zhang ◽  
...  

In scenarios such as natural disasters and military strike, it is common for unmanned aerial vehicles (UAVs) to form groups to execute reconnaissance and surveillance. To ensure the effectiveness of UAV communications, repeated resource acquisition issues and transmission mechanism design need to be addressed urgently. In this paper, we build an information interaction scenario in a Flying Ad-hoc network (FANET). The data transmission problem with the goal of throughput maximization is modeled as a coalition game framework. Then, a novel mechanism of coalition selection and data transmission based on group-buying is investigated. Since large-scale UAVs will generate high transmission overhead due to the overlapping resource requirements, we propose a resource allocation optimization method based on distributed data content. Comparing existing works, a data transmission and coalition formation mechanism is designed. Then the system model is classified into graph game and coalition formation game. Through the design of the utility function, we prove that both games have stable solutions. We also prove the convergence of the proposed approach with coalition order and Pareto order. Binary log-linear learning based coalition selection algorithm (BLL-CSA) is proposed to explore the stable coalition partition of system model. Simulation results show that the proposed data transmission and coalition formation mechanism can achieve higher data throughput than the other contrast algorithms.


Author(s):  
Salvatore Distefano ◽  
Antonio Puliafito

Cloud computing is the new consolidated trend in ICT, often considered as the panacea to all the problems of existing large-scale distributed paradigms such as Grid and hierarchical clustering. The Cloud breakthrough is the service oriented perspective of providing everything “as a service”. Different from the others large-scale distributed paradigms, it was born from commercial contexts, with the aim of selling the temporarily unexploited computing resources of huge datacenters in order to reduce the costs. Since this business model is really attractive and convenient for both providers and consumers, the Cloud paradigm is quickly growing and widely spreading, even in non commercial context. In fact, several activities on the Cloud, such as Nimbus, Eucalyptus, OpenNEbula, and Reservoir, etc., have been undertaken, aiming at specifying open Cloud infrastructure middleware.


Sign in / Sign up

Export Citation Format

Share Document