scholarly journals Velocity-Aware Handover Self-Optimization Management for Next Generation Networks

2020 ◽  
Vol 10 (4) ◽  
pp. 1354 ◽  
Author(s):  
Abdulraqeb Alhammadi ◽  
Mardeni Roslee ◽  
Mohamad Yusoff Alias ◽  
Ibraheem Shayea ◽  
Abdullah Alquhali

The fifth generation (5G) network is an upcoming standard for wireless communications that coexists with the current 4G network to increase the throughput. The deployment of ultra-dense small cells (UDSC) over a macro-cell layer yields multi-tier networks, which are known as heterogeneous networks (HetNets). HetNets play a key role in the cellular network to provide services to numerous users. However, the number of handovers (HOs) and radio link failure (RLF) greatly increase due to the increase in the UDSC in the network. Therefore, mobility management becomes a very important function in a self-organizing network to improve the system performance. In this paper, we propose a velocity-based self-optimization algorithm to adjust the HO control parameters in 4G/5G networks. The proposed algorithm utilizes the user’s received power and speed to adjust the HO margin and the time to trigger during the user’s mobility in the network. Simulation results demonstrate that the proposed algorithm achieves a remarkable reduction in the rate of ping-pong HOs and RLF compared with other existing algorithms, thereby outperforming such algorithms by an average of more than 70% for all HO performance metrics.

Author(s):  
Hamza Mohammed Ridha Al-Khafaji ◽  
Hasan Shakir Majdi

<p>This paper scrutinizes the influence of deployment scenarios on the energy performance of fifth-generation (5G) network at various backhaul wireless frequency bands. An innovative network architecture, the hybrid centric-distributed, is employed and its energy efficiency (EE) model is analyzed. The obtained results confirm that the EE of the 5G network increases with an increasing number of small cells and degrades with an increasing frequency of wireless backhaul and radius of small cells regardless of the network architectures. Moreover, the hybrid centric-distributed architecture augments the EE when compared with the distributed architecture.</p>


Author(s):  
Muhammad Ayoub Kamal ◽  
Hafiz Wahab Raza ◽  
Muhammad Mansoor Alam ◽  
M.S. Mazliham

Fifth Generation (5G) communication technology is intended to offer higher data rates, outstanding user exposure, power consumption, and extremely short latency. Such cellular networks will implement a diverse multi-layer model comprising of device-to-device networks, macro-cells, and dissimilar categories of small-cells to assist customers with desired quality-of-service (QoS). This multi-layer model affects several studies that confront utilizing interference management and resource allocation in 5G networks. With the growing need and the lack of resources, the resource distribution problem desires to be focused capably to accomplish the traffic and to enhance network working. One of the utmost serious problems is to alleviate the jamming from the network in support of having a better QoS. However, there are limited review papers written on resource distribution, there is no particularize and organized review carry out in 5G resource allocation. Hence, this article covers and evaluates the argument using a classification of existing developing resource allocation schemes in 5G thoroughly by classifying the schemes to enhance the service quality. This survey comprises the discussion based on metrics used to evaluate the performance. It would also permit ahead beyond evidence on resource allocation methods in 5G and empowers the scholars to meet the present research areas to focus on.


2021 ◽  
Author(s):  
Mobasshir Mahbub ◽  
Bobby Barua

Abstract Advancements of cellular networks such as 4G and 5G proposed the collaboration of small-cell technologies in mobile networks and constructed a heterogeneous network (HetNet) for collaborative connectivity. There are many benefits of small-cell-based collective communication such as the increase of device capability in indoor/outdoor locations, enhancement of wireless coverage, improved signal efficiency, lower implementation costs of gNB (Next-generation Base Station introduced in 5G), etc. The integration of small-cells by deploying low-power BSs (base stations) in conventional macro-gNBs was investigated as a convenient and economical way of raising the potentials of a cellular network with high demand from consumers. The fusion of small-cells with macro-cells offers increased coverage and capacity for heterogeneous networks. Therefore, the research aimed to realize the performance of a small-cell deployed under a macro-cell in a two-tier heterogeneous network. The research first modified the reference equation for measuring the received power by introducing the transmitter and receiver gain. The paper then measured the SINR, throughput, spectral efficiency, and power efficiency for both downlink and uplink by empirical simulation. The research further enlisted the notable outcomes after examining the simulation results and discussed some relevant research scopes in the concluding sections of the paper.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5202
Author(s):  
Wasan Kadhim Saad ◽  
Ibraheem Shayea ◽  
Bashar J. Hamza ◽  
Hafizal Mohamad ◽  
Yousef Ibrahim Daradkeh ◽  
...  

The massive growth of mobile users will spread to significant numbers of small cells for the Fifth Generation (5G) mobile network, which will overlap the fourth generation (4G) network. A tremendous increase in handover (HO) scenarios and HO rates will occur. Ensuring stable and reliable connection through the mobility of user equipment (UE) will become a major problem in future mobile networks. This problem will be magnified with the use of suboptimal handover control parameter (HCP) settings, which can be configured manually or automatically. Therefore, the aim of this study is to investigate the impact of different HCP settings on the performance of 5G network. Several system scenarios are proposed and investigated based on different HCP settings and mobile speed scenarios. The different mobile speeds are expected to demonstrate the influence of many proposed system scenarios on 5G network execution. We conducted simulations utilizing MATLAB software and its related tools. Evaluation comparisons were performed in terms of handover probability (HOP), ping-pong handover probability (PPHP) and outage probability (OP). The 5G network framework has been employed to evaluate the proposed system scenarios used. The simulation results reveal that there is a trade-off in the results obtained from various systems. The use of lower HCP settings provides noticeable enhancements compared to higher HCP settings in terms of OP. Simultaneously, the use of lower HCP settings provides noticeable drawbacks compared to higher HCP settings in terms of high PPHP for all scenarios of mobile speed. The simulation results show that medium HCP settings may be the acceptable solution if one of these systems is applied. This study emphasises the application of automatic self-optimisation (ASO) functions as the best solution that considers user experience.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2489
Author(s):  
David Segura ◽  
Emil J. Khatib ◽  
Jorge Munilla ◽  
Raquel Barco

The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. Ultra-Reliable and Low Latency Communications (URLLC) is the 5G service category used by critical mechanisms, with a millisecond end-to-end delay and reduced probability of failure. 5G defines new numerologies, together with mini-slots for a faster scheduling. The main challenge of this is to select the appropriate numerology according to radio conditions. This fact is very important in industrial scenarios, where the fundamental problems are interference and multipath propagation, due to the presence of concrete walls and large metallic machinery and structures. Therefore, this paper is focused on analyzing the impact of the numerology selection on the delay experienced at radio link level for a remote-control service. The study, which has been carried out in a simulated cellular factory environment, has been performed for different packet sizes and channel conditions, focusing on outliers. Evaluation results show that not always a higher numerology, with a shorter slot duration, is appropriate for this type of service, particularly under Non-Line-of-Sight (NLOS) conditions.


2018 ◽  
Vol 10 (10) ◽  
pp. 3626 ◽  
Author(s):  
Yousaf Zikria ◽  
Sung Kim ◽  
Muhammad Afzal ◽  
Haoxiang Wang ◽  
Mubashir Rehmani

The Fifth generation (5G) network is projected to support large amount of data traffic and massive number of wireless connections. Different data traffic has different Quality of Service (QoS) requirements. 5G mobile network aims to address the limitations of previous cellular standards (i.e., 2G/3G/4G) and be a prospective key enabler for future Internet of Things (IoT). 5G networks support a wide range of applications such as smart home, autonomous driving, drone operations, health and mission critical applications, Industrial IoT (IIoT), and entertainment and multimedia. Based on end users’ experience, several 5G services are categorized into immersive 5G services, intelligent 5G services, omnipresent 5G services, autonomous 5G services, and public 5G services. In this paper, we present a brief overview of 5G technical scenarios. We then provide a brief overview of accepted papers in our Special Issue on 5G mobile services and scenarios. Finally, we conclude this paper.


LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


Author(s):  
Yi Xie

Heterogeneous network is supposed to be the dominant network architecture of the fifth generation (5G) cellular network, which means small cells are overlaid on the macrocell. The beamforming (BF) and cell expansion are two important approaches to serve users in small cells. Furthermore, non-orthogonal multiple access (NOMA) is a new type of multiple access multiplexing which improves system performance without taking up extra spectrum resources. Therefore, it becomes one promising technique in 5G. In this paper, NOMA is applied in a 5G heterogeneous network with biased small cells. The BF strategy and the multiuser scheduling method are proposed. The main user in NOMA is scheduled inside the original coverage of the small cell while the side user is chosen from the biased expansion area. The BF strategy that is executed depends on the channel of main user. The multiuser scheduling method is to maximize the rate performance. The proposed method can provide performance benefits. Simulation results show that the proposed methods can be well applied in heterogeneous networks. The achieved performance gain is approximately twice better than traditional OMA and has 10% improvement to the stochastic schedule method. In addition, the average rate of cell edge users is improved.


Author(s):  
Henok M. Besfat ◽  
Zelalem Hailu Gebeyehu ◽  
Sudhir K. Routray

Cellular network traffic increases rapidly, and new services are introduced every year. For proper planning and design of such networks, exact requirements must be known with good accuracy. Dimensioning is an important part of network planning and design. Dimensioning is essential to determine the network requirements. In the coming years, fifth-generation (5G) will be deployed widely. 5G infrastructure is hybrid of wireless and optical components. For 5G network dimensioning, there is a need of a hybrid model. In this paper, the authors develop mathematical expressions for 5G network dimensioning. They use ITU proposed typical 5G network provisions to estimate bandwidth, network capacity, coverage, and capital expenditures. They also establish the correlation between the optical and the wireless parts. The expressions developed in this work can be used for the fast estimation of network coverage. So, this model can play important roles for 5G network planning and design.


Author(s):  
Phudit Ampririt ◽  
Ermioni Qafzezi ◽  
Kevin Bylykbashi ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
...  

The fifth generation (5G) network is expected to be flexible to satisfy quality of service (QoS) requirements, and the software-defined network (SDN) with network slicing will be a good approach for admission control. In this paper, the authors present and compare two fuzzy-based schemes to evaluate the QoS (FSQoS). They call these schemes FSQoS1 and FSQoS2. The FSQoS1 considers three parameters: slice throughput (ST), slice delay (SD), and slice loss (SL). In FSQoS2, they consider as an additional parameter the slice reliability (SR). So, FSQoS2 has four input parameters. They carried out simulations for evaluating the performance of the proposed schemes. From simulation results, they conclude that the considered parameters have different effects on the QoS performance. The FSQoS2 is more complex than FSQoS1, but it has a better performance for evaluating QoS. When ST and SR are increasing, the QoS parameter is increased. But, when SD and SL are increasing, the QoS is decreased. When ST is 0.1, SD is 0.1, SL is 0.1, and the QoS is increased by 32.02% when SR is increased from 0.3 to 0.8.


Sign in / Sign up

Export Citation Format

Share Document