scholarly journals Effect of Foliar and Soil Fertilization with New Products Based on Calcinated Bones on Selected Physiological Parameters of Maize Plants

2020 ◽  
Vol 10 (7) ◽  
pp. 2579 ◽  
Author(s):  
Natalia Matlok ◽  
Małgorzata Szostek ◽  
Piotr Antos ◽  
Grażyna Gajdek ◽  
Józef Gorzelany ◽  
...  

This manuscript presents the effect of foliar and soil fertilizer produced from thermally processed bone waste on the initial growth and development of maize plants. The developed fertilizers were tested in three different doses in a pot experiment. Because nutrient deficiency interferes with plant physiological processes, the impact of the developed fertilizers on gas exchange parameters, relative chlorophyll content, and chlorophyll fluorescence parameters were assessed. Based on the conducted research, it was found that fertilization with developed foliar and soil fertilizers increased the relative content of chlorophyll in maize leaves and increased the value of gas exchange parameters and chlorophyll fluorescence. All determined parameters of gas exchange and chlorophyll fluorescence showed a positive correlation depending on the dose of foliar fertilization used (average value r = 0.8414). In turn, the soil fertilization that was utilized during the experiment significantly correlated only with the content of chlorophyll (r = 0.6965). The tested fertilizers improvement of the physiological parameters of the plants, which indicates the fertilizing efficiency of the tested fertilizers.

Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1531-1535 ◽  
Author(s):  
Ibrahim A. M. Saeed ◽  
Ann E. MacGuidwin ◽  
Douglas I. Rouse ◽  
Chris Malek

Field experiments were conducted for three consecutive years to study the effects of low populations of Verticillium dahliae and Pratylenchus penetrans on leaf gas exchange of Russet Burbank potato. Treatments were P. penetrans, V. dahliae, the combination of the nematode with the fungus, and a no-pathogen control. Gas exchange was measured nondestructively on young, fully expanded, asymptomatic leaves one to three times per week starting the ninth week after planting. Infection with either pathogen alone had little or no effect on leaf gas exchange parameters. However, co-infection by both pathogens resulted in reduced leaf light use efficiency (mole of CO2 fixed per mole of photon), lower leaf stomatal conductance, lower leaf water use efficiency (mole of CO2 fixed per mole of water used), and increased intercellular CO2 compared with the no-pathogen control. These effects, additive relative to the impact of each pathogen alone, were first observed 9 weeks after inoculation in the first 2 years of the study and 15 weeks after inoculation in the third year.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 362 ◽  
Author(s):  
Nastaran Basiri Jahromi ◽  
Amy Fulcher ◽  
Forbes Walker ◽  
James Altland

Water resources can be used more efficiently by including sustainable substrate components like coir that increase water-holding capacity. The first objective of this study was to evaluate the impact of coir amendment rate on plant available water and plant gas exchange, with the goal of optimizing substrate available water and determining the optimum coir amendment rate in a greenhouse environment. The second objective was to establish the optimum method of determining plant available water using either plant gas exchange parameters or substrate physical properties. Greenhouse experiments were conducted with Hydrangea paniculata ‘Jane’ (Little Lime® hardy hydrangea) potted with one of five different coir rates (0%, 10%, 25%, 40% and 65%) mixed with pine bark on a volume basis. Plant gas exchange parameters and substrate water content were measured daily over a range of increasingly drier substrate moisture contents. Actual photosynthetic rates increased with increasing coir amendment rate and were highest with 65% coir amendment. Amending pine bark with coir increased the water storage capacity, plant available water, and plant gas exchange parameters. Results suggest that 65% coir amendment rate was the optimum amendment rate among those tested in a greenhouse environment and plant photosynthetic rate was the better method of determining plant available water.


Author(s):  
K. Pugazenthi ◽  
V. Geethalakshmi ◽  
A. Senthil ◽  
K. Kumaran ◽  
S. Umesh Kanna

Neem is known for its medicinal values and is a hardy plant that can grow in a wide variety of environmental conditions. However, productivity is impacted by unfavourable weather conditions due to different geographical locations. The present study was conducted to study the influence of prevailing weather conditions on certain physiological parameters deciding the reproductive ability of neem trees. The study was conducted in two different locations at different agro-climatic regions of Tamil Nadu, India. Gas exchange parameters like photosynthetic rate, stomatal conductance, transpiration rate and leaf temperature and relative water content during pre-flowering, flowering and post-flowering stages were measured and correlated with temperature, relative humidity, precipitation and wind speed observed from the corresponding location. In both locations, the neem trees recorded significantly higher values for these physiological parameters during the pre-flowering and fruiting stages compared to the flowering stage. The trees with higher Diameter and breast height (DBH) showed higher values for gas exchange parameters compared to the trees with lower DBH.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12620
Author(s):  
Yi Wang ◽  
Bingyu Jia ◽  
Hongjian Ren ◽  
Zhen Feng

Background Polyploidy plays an important role in plant breeding and has widespread effects on photosynthetic capacity. To determine the photosynthetic capacity of the tetraploid variety Acer buergerianum Miq. ‘Xingwang’, we compared the gas exchange parameters, chloroplast structure, chlorophyll contents, and chlorophyll fluorescence parameters between the tetraploid Acer buergerianum ‘Xingwang’ and the diploid ‘S4’. To evaluate the effects of genome duplication on the photosynthetic capacity of Acer buergerianum ‘Xingwang’, the transcriptomes of the autotetraploid ‘Xingwang’ and the diploid ‘S4’ of A. buergerianum were compared. Methods The ploidy of Acer buergerianum ‘Xingwang’ was identified by flow cytometry and the chromosome counting method. An LI-6800 portable photosynthesis system analyzer was used to assess the gas exchange parameters of the tetraploid variety ‘Xingwang’ and diploid variety ‘S4’ of A. buergerianum. We used a BioMate 3S ultraviolet-visible spectrophotometer and portable modulated fluorometer to measure the chlorophyll contents and chlorophyll fluorescence parameters, respectively, of ‘Xingwang’ and ‘S4’. Illumina high-throughput sequencing technology was used to identify the differences in the genes involved in the photosynthetic differences and determine their expression characteristics. Results The single-cell DNA content and chromosome number of the tetraploid ‘Xingwang’ were twice those found in the normal diploid ‘S4’. In terms of gas exchange parameters, the change in stomatal conductance, change in intercellular CO2 concentration, transpiration rate and net photosynthetic rate of ‘Xingwang’ were higher than those of the diploid ‘S4’. The chlorophyll contents, the maximal photochemical efficiency of PSII and the potential photochemical efficiency of PSII in ‘Xingwang’ were higher than those of ‘S4’. The chloroplasts of ‘Xingwang’ contained thicker thylakoid lamellae. By the use of Illumina sequencing technology, a total of 51,807 unigenes were obtained; they had an average length of 1,487 nt, and the average N50 was 2,034 nt. The lengths of most of the unigenes obtained ranged from 200–300 bp, with an average value of 5,262, followed by those longer than 3,000 bp, with an average value of 4,791. The data revealed numerous differences in gene expression between the two transcriptomes. In total, 24,221 differentially expressed genes were screened, and the percentage of differentially expressed genes was as high as 46.75% (24,224/51,807), of which 10,474 genes were upregulated and 13,747 genes were downregulated. We analyzed the key genes in the photosynthesis pathway and the porphyrin and chlorophyll metabolism pathway; the upregulation of HemB may promote an increase in the chlorophyll contents of ‘Xingwang’, and the upregulation of related genes in PSII and PSI may enhance the light harvesting of ‘Xingwang’, increasing its light energy conversion efficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1928
Author(s):  
Renata Tobiasz-Salach ◽  
Barbara Stadnik ◽  
Dagmara Migut

Soil salinity is one of the most important environmental factors threatening agriculture on a global level. Plants show differences in resistance to salt stress, both in terms of species and variety. The aim of the study was to determine the effect of salt stress on photosynthetic efficiency and the activity of plants of two barley varietie—KWS Irina and RGT Planet. Plants grown in a pot experiment were subjected to soil treatment with sodium chloride (NaCl) at concentrations of 0, 50, 100, and 150 mmol∙(dm3)−1. Measurements were made four times at intervals of 7, 14, 21, and 28 days after the application of NaCl. The relative chlorophyll content in leaves (CCl) and selected chlorophyll fluorescence parameters (Fv/Fm, Fv/F0, and PI) and gas exchange parameters (PN, E, gs, and Ci) were assessed. In the final stage of the experiment, a visual assessment of the plants’ condition was carried out and the amount of fresh mass (FM) of the above-ground part was determined. The content of sodium and potassium in the vegetative parts of plants was also analysed. Salinity significantly influenced the values of the measured parameters in both of the tested barley genotypes. High salt concentrations in the soil at levels of 100 and 150 mmol NaCl (dm3)−1 negatively affected the growth and development of plants by disturbing the process of photosynthesis and other plant gas exchange parameters. The antagonistic effect of sodium in relation to potassium resulted in a decrease in the K+ content in the plants, along with an increase in the salinity level.


Sign in / Sign up

Export Citation Format

Share Document