scholarly journals Performance Analysis in Heterogeneous Networks with Spatiotemporal Traffic and Scheduling

2020 ◽  
Vol 10 (8) ◽  
pp. 2901
Author(s):  
Jianfang Xin ◽  
Ying Wang ◽  
Qi Zhu ◽  
Guangjun Liang ◽  
Tianjiao Zhang

In this work, we consider interference performance under direct data transmission in a heterogeneous network. The heterogeneous network consists of K-tier base stations and users, whose locations follow independent Poisson point processes (PPPs). Packet arrivals of users follow independent Bernoulli processes. Two different scheduling policies, round-robin (RR) and random scheduling (RS), are employed to all the Base Stations (BS). The universal frequency reuse mode is adopted to reveal actual spectrum reuse. By leveraging stochastic geometry and queueing theory, the interference interactions of the proposed network are accurately modelled. Accurate expressions for the mean packet throughputs of the network under universal frequency reuse mode are derived. The simulation results explore the optical bias factors in heterogeneous networks to maximize the mean packet throughput. Under a given user density, by changing BS densities, we achieved a certain mean packet throughput level.

Author(s):  
Yatendra Singh Bhandari ◽  
Yashwant Singh Chauhan ◽  
Priti Dimri

<p>Heterogeneous Networks are bunch of homogeneous networks base stations grouped together. The term introduced in this research paper Time Efficiency (Te) gives out the information on the heterogeneous networks where most of the data flows in and out. In this paper, a model for evaluating Time Efficiency in heterogeneous network is developed. The common goals of different base stations in a heterogeneous network are towards coverage of area and capability improvement. Base stations in a homogeneous network differs in transmitted power, achievable rate of data, area covered, density of a base station, energy efficiency and time efficiency. To find out the area of most data flow in certain period, Time efficiency can be used as a major factor.</p><p><em> </em></p>


Author(s):  
Alvita Maurizka ◽  
F. Hamdani ◽  
M. M. Ulfah ◽  
Iskandar Iskandar

As the traffic demand grows and the RF environment changes, the mobile network relies on techniques such as SFR in Heterogeneous Network (HetNet) to overcome capacity and link budget limitation to maintain user experience. Inter-Cell Interference (ICI) strongly affecting Signal-to-Interference plus Noise Ratio (SINR) of active UEs, especially cell-edge users, which leads to a significant degradation in the total throughput. In this paper we evaluate the performance of SFR with HetNet system in order dealing with interferences. Simulation result shows that the power ratio control in SFR HetNet system doesn’t have much effect on total achieved capacity for overall cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Léo Pio-Lopez ◽  
Alberto Valdeolivas ◽  
Laurent Tichit ◽  
Élisabeth Remy ◽  
Anaïs Baudot

AbstractNetwork embedding approaches are gaining momentum to analyse a large variety of networks. Indeed, these approaches have demonstrated their effectiveness in tasks such as community detection, node classification, and link prediction. However, very few network embedding methods have been specifically designed to handle multiplex networks, i.e. networks composed of different layers sharing the same set of nodes but having different types of edges. Moreover, to our knowledge, existing approaches cannot embed multiple nodes from multiplex-heterogeneous networks, i.e. networks composed of several multiplex networks containing both different types of nodes and edges. In this study, we propose MultiVERSE, an extension of the VERSE framework using Random Walks with Restart on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. MultiVERSE is a fast and scalable method to learn node embeddings from multiplex and multiplex-heterogeneous networks. We evaluate MultiVERSE on several biological and social networks and demonstrate its performance. MultiVERSE indeed outperforms most of the other methods in the tasks of link prediction and network reconstruction for multiplex network embedding, and is also efficient in link prediction for multiplex-heterogeneous network embedding. Finally, we apply MultiVERSE to study rare disease-gene associations using link prediction and clustering. MultiVERSE is freely available on github at https://github.com/Lpiol/MultiVERSE.


2011 ◽  
Vol 1 ◽  
pp. 3-8
Author(s):  
Cong Zhao ◽  
Wei Guo

To achieve the goal that anybody could communicate with anyone at anytime in anyplace and in anyway, many technologies, such as GSM、CDMA、WCDMA、CDMA2000、TD-SCDMA、802.11a/b/g and so on, come true in the past years. And now, many B3G or 4G technologies are being studied. It is well-known that the future network would be heterogeneous networks. It is studied in this paper the mobility management of wireless heterogeneous network and a reversing paging process of callee is proposed which integrates paging and handoff. In the process when the caller pages the callee choosing its best suited network on one end, the callee chooses its own best network to begin a reversing paging process to set up the communication. The simulation tells that the proposed process has better performances in the call delay, the call succeeding rate and the wireless signal cost than that of the existing process in which it sets up the call first and then does vertical handoff independently.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In OFDMA femtocell networks, the licensed spectrum of the macro users (MUs) are available to the femto users (FUs), on the condition that they do not spark off notable interference to the MUs. We contemplate wireless data for femto user (FU) / secondary user (SU) in cognitive radio (CR) networks where the frame structure split up into sensing and data transmission slots. Moreover, we consider soft frequency reuse (SFR) technique to improve secondary network throughput by increasing the macrocell edge user power control factor. SFR applies a frequency reuse factor (FRF) of 1 to the terminal located at the cell centre for that all base stations (BSs) share the total spectrum. But for the transmission on each sub-carrier the BSs are confined to a certain power level. However, more than 1 FRF uses for the terminals near to the macrocell edge area. In this context, we conceptualize the cognitive femtocell in the uplink in which the femtocell access point (FAP) initially perceive by sensing to find out the availability of MU after that FAP revamps its action correspondingly. Appropriately, when the MU is sensed to be non-existent, the FU transmits at maximum power. In other respect, the FAP make the best use of the transmit power of the FU to optimize the secondary network throughput concern to outage limitation of the MU. Finally, effectiveness of the scheme is verified by the extensive matlab simulation.</div>


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


Author(s):  
Farnaz Farid ◽  
Seyed Shahrestani ◽  
Chun Ruan

The heterogeneous-based 4G wireless networks will offer noticeable advantages for both users and network operators. The users will benefit from the vibrant coverage and capacity. A vast number of available resources will allow them to connect seamlessly to the best available access technology. The network operators, on the other hand, will be benefited from the lower cost and the efficient usage of the network resources. However, managing QoS for video or voice applications over these networks is still a challenging task. In this chapter, a generalized metric-based approach is described for QoS quantification in Heterogeneous networks. To investigate the efficiency of the designed approach, a range of simulation studies based on different models of service over the heterogeneous networks are carried out. The simulation results indicate that the proposed approach facilitates better management and monitoring of heterogeneous network configurations and applications utilizing them.


Author(s):  
Bhuvaneswari Mariappan

Heterogeneous networks are comprised of dense deployments of pico (small cell) base stations (BSs) overlaid with traditional macro BSs, thus allowing them to communicate with each other. The internet itself is an example of a heterogeneous network. Presently, the emergence of 4G and 5G heterogeneous network has attracted most of the user-centric applications like video chatting, online mobile interactive classroom, and voice services. To facilitate such bandwidth-hungry multimedia applications and to ensure QoS (quality of service), always best-connected (ABC) network is to be selected among available heterogeneous network. The selection of the ABC network is based on certain design parameters such as cost factor, bandwidth utilization, packet delivery ratio, security, throughput, delay, packet loss ratio, and call blocking probability. In this chapter, all the above-mentioned design parameters are considered to evaluate the performance of always best-connected network under heterogeneous environment for mobile users.


Sign in / Sign up

Export Citation Format

Share Document