scholarly journals Mechanical and Thermal Behavior of Ultem® 9085 Fabricated by Fused-Deposition Modeling

2020 ◽  
Vol 10 (9) ◽  
pp. 3170 ◽  
Author(s):  
Elisa Padovano ◽  
Marco Galfione ◽  
Paolo Concialdi ◽  
Gianni Lucco ◽  
Claudio Badini

Fused-deposition modeling (FDM) is an additive manufacturing technique which is widely used for the fabrication of polymeric end-use products in addition to the development of prototypes. Nowadays, there is an increasing interest in the scientific and industrial communities for new materials showing high performance, which can be used in a wide range of applications. Ultem 9085 is a thermoplastic material that can be processed by FDM; it recently emerged thanks to such good properties as excellent flame retardancy, low smoke generation, and good mechanical performance. A deep knowledge of this material is therefore necessary to confirm its potential use in different fields. The aim of this paper is the investigation of the mechanical and thermal properties of Ultem 9085. Tensile strength and three-point flexural tests were performed on samples with XY, XZ, and ZX building orientations. Moreover, the influence of different ageing treatments performed by varying the maximum reached temperature and relative humidity on the mechanical behavior of Ultem 9085 was then investigated. The thermal and thermo-oxidative behavior of this material was also determined through thermal-gravimetric analyses.

2018 ◽  
Vol 31 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Shenglong Jiang ◽  
Guangxin Liao ◽  
Dingding Xu ◽  
Fenghua Liu ◽  
Wen Li ◽  
...  

Polyetherimide (PEI) is a kind of high-performance polymer, which possesses a high glass transition temperature ( Tg), excellent flame retardancy, low smoke generation, and good mechanical properties. In this article, PEI was applied in the fused deposition modeling (FDM)–based 3-D printing for the first time. The entire process from filament extrusion to printing was studied. It was observed that the filament orientation and nozzle temperature were closely related to the mechanical properties of printed samples. When the nozzle temperature is 370°C, the mean tensile strength of FDM printing parts can reach to 104 MPa, which is only 7% lower than that of injection molded parts. It can be seen that the 0° orientation set of samples show the highest storage modulus (2492 MPa) followed by the 45° samples, and the 90° orientation set of samples show the minimum storage modulus (1420 MPa) at room temperature. The above results indicated that this technique allows the production of parts with adequate mechanical performance, which does not need to be restricted to the production of mock-ups and prototypes. Our work broke the limitations of traditional FDM technology and expanded the types of material available for FDM to the high-temperature engineering plastics.


2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.


2021 ◽  
Author(s):  
Prathamesh Baikerikar ◽  
Cameron J Turner

Abstract Parts built using Fused Deposition Modeling (FDM – an additive manufacturing technology) differ from their design model in terms of their microstructure and material properties. These differences lead to a certain amount of ambiguity regarding the structure, strength and stiffness of the final FDM part. Increasing use of FDM parts as end use products, necessitates accurate simulations and analyses during part design. However, analysis methods such as Finite Element Analysis, are used for analysis of continuum models, and may not accurately represent the non-continuous non-linear FDM parts. Therefore, it is necessary to determine the accuracy and precision of FEA for FDM parts. The goal of this study is to compare FEA simulations of the as-built geometries with the experimental tests of actual FDM parts. Dogbone geometries that include different infill patterns are tested under tensile loading and later simulated using FEA. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2319 ◽  
Author(s):  
Qianqian Wang ◽  
Chencheng Ji ◽  
Lushan Sun ◽  
Jianzhong Sun ◽  
Jun Liu

As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.


Author(s):  
Surendra Singh Dewada ◽  
Amit Telang

Abstract Additive Manufacturing (AM) is a rapidly evolving technology due to its numerous advantages over traditional manufacturing processes. AM processable materials are limited and have poor mechanical performance, restraining the technology's potential for functional part manufacturing. Although FDM is the most popular and growing technique, the inferiority of the material limits its application to prototyping. Nanocomposite material improves the thermal, mechanical, and electrical performance of FDM objects. Mostly polymer nanocomposites are feasible to process and several researchers have reported enhanced performance with polymer nanocomposites. Carbon nanotubes, graphene nanoplatelets, nano clay, and carbon fiber are primary reinforcements to thermoplastics. The current state of the art relevant to advances in nanocomposites for the FDM process, as well as the influence of nanofillers on mechanical properties of the build object are reviewed in this paper.


2020 ◽  
Vol 15 ◽  
pp. 155892502094821
Author(s):  
Tatjana Spahiu ◽  
Eriseta Canaj ◽  
Ermira Shehi

3D printing is a well-known technology for creating 3D objects by laying down successive layers of various materials. Among the wide range of applications, fashion industry has adapted these technologies to revolutionize their brands. But due to the unique characteristics of textiles like comfort, flexibility, and so on, attempts have been made to create similar structures as textiles. The work presented here is part of a project to create garments using fused deposition modeling as 3D printing technology. Structures with various geometries are designed and tested with different materials starting from rigid to flexible. As a result, a fully 3D printed dress is created. Selecting this dress as a model, consumer acceptance for 3D printed garments is evaluated realizing an online survey containing 100 respondents. The data gathered show that respondents have knowledge of 3D printing, its advantages and the majority of them would accept wearing a 3D printed dress.


2021 ◽  
Vol 877 ◽  
pp. 67-72
Author(s):  
Niño B. Felices ◽  
Bryan B. Pajarito

Epoxysilane-treated muscovite (ETM) was used as reinforcing filler to 3D-printed acrylonitrile butadiene styrene (ABS) via fused deposition modeling (FDM). Its effects to the mechanical and thermal properties of ABS were investigated. ETM was loaded at 1, 3, and 5wt%. ABS/ETM composites were characterized via scanning electron microscopy (SEM), tensile test, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical reinforcement of ABS was observed for ABS/ETM composites loaded at 1 and 3 wt% wherein it was noted that the tensile strength and elastic modulus increased by up to 83.6% and 76.6%, respectively. Reinforcement was brought by interfacial adhesion of ETM with the ABS matrix. There was a sharp decline in mechanical properties for ABS/ETM composites loaded at 5wt% due to agglomeration of ETM in the matrix and discontinuities in the printed layers. The glass transition temperature (Tg) of ABS increased and the onset of its degradation shifted towards higher temperatures with the addition of ETM. It can be concluded that the addition of ETM to ABS for FDM 3D printing improved its mechanical and thermal properties.


2017 ◽  
Vol 23 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Hao Li ◽  
Shuai Zhang ◽  
Zhiran Yi ◽  
Jie Li ◽  
Aihua Sun ◽  
...  

Purpose This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality. Design/methodology/approach Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated. Findings The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM. Originality/value This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.


2020 ◽  
Vol 26 (7) ◽  
pp. 1277-1288
Author(s):  
Mohammad Amin Rahiminia ◽  
Masoud Latifi ◽  
Mojtaba Sadighi

Purpose The purpose of this paper is to introduce an innovative transversal tubular braid texture and to study the elastic behavior of its 3 D printed structure comparatively to 3 D printed longitudinal tubular braid texture (maypole) to be used as reinforcement. Design/methodology/approach Regarding the lack of proper machines for the production of the proposed texture, the structure of samples was produced as a tubular lattice braid texture using a 3 D printer with the fused deposition modeling method subsequent to simulation by Rhinoceros software. The produced specimens were composited by polyurethane resin. The composite samples were evaluated by the split disk mechanical test to obtain their hoop stress. The structures of the reinforced composites were theoretically analyzed by ANSYS software. Findings The results of the mechanical test and theoretical analysis showed that the composites reinforced with transversal tubular lattice braid have higher strength compared to the composites reinforced with longitudinal ones. This assured that the composite reinforced by transversal tubular lattice braid is reliable to be used as high-performance tube for different applications. Originality/value Further work is carried out to produce the innovated complex structure continuously by a specially designed machine and fibrous materials to reinforce tubular composites in an industrial continual process to be applied for high-pressure fluids flows.


Sign in / Sign up

Export Citation Format

Share Document