scholarly journals Impacts of Upstream Structures on Downstream Discharge in the Transboundary Imjin River Basin, Korean Peninsula

2020 ◽  
Vol 10 (9) ◽  
pp. 3333
Author(s):  
Doan Thi Thu Ha ◽  
Seon-Ho Kim ◽  
Deg-Hyo Bae

The transboundary river basin is a great challenge for water management and disaster reduction due to its specific characteristics. In this study, upstream impacts from natural and artificial sources on the downstream discharge on the Imjin river basin, the well-known transboundary region in the Korean peninsula, were evaluated using a hydrological model integrating a dam operation module at an hourly timescale. The module uses a concept of the AutoROM method as the operational rule to update the dam storage and decide water release. Dam storages were translated into water levels using a water level–storage curve. To quantify the impact of hydraulic structures on the Northern Imjin river basin, change in discharge was analyzed in four flood events (2009, 2010, 2011, and 2012). Dam failure scenarios were developed under conditions of the 2010 flood event, in which the releases of 100%, 80%, 50%, and 20% of water storage of Hwanggang dam were simulated. The results indicate that the amount of water released from upstream dams is the main cause of floods in the downstream region. To reduce the risk of floods in the downstream river basin, an optimal dam operation module and information on upstream dams play an important role and contribute to the effective use of water resources.

2009 ◽  
Vol 60 (8) ◽  
pp. 2077-2084 ◽  
Author(s):  
G. Stuart ◽  
A. Hollingsworth ◽  
F. Thomsen ◽  
S. Szylkarski ◽  
S. Khan ◽  
...  

Gold Coast Water is responsible for the management of the water, recycled water and wastewater assets of the City of the Gold Coast on Australia's east coast. Excess treated recycled water is released at the Gold Coast Seaway, a man-made channel connecting the Broadwater Estuary with the Pacific Ocean, on an outgoing tide in order for the recycled water to be dispersed before the tide changes and re-enters the Broadwater estuary. Rapid population growth has placed increasing demands on the city's recycled water release system and an investigation of the capacity of the Broadwater to assimilate a greater volume of recycled water over a longer release period was undertaken in 2007. As an outcome, Gold Coast Water was granted an extension of the existing release licence from 10.5 hours per day to 13.3 hours per day from the Coombabah wastewater treatment plant (WWTP). The Seaway SmartRelease Project has been designed to optimise the release of the recycled water from the Coombabah WWTP in order to minimise the impact to the receiving estuarine water quality and maximise the cost efficiency of pumping. In order achieve this; an optimisation study that involves intensive hydrodynamic and water quality monitoring, numerical modelling and a web-based decision support system is underway. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. This data was then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The Decision Support System will then collect continually measured data such as water levels, interact with the WWTP SCADA system, run the numerical models and provide the optimal time window to release the required amount of recycled water from the WWTP within the licence specifications.


2020 ◽  
Author(s):  
You Lu ◽  
Iolanda Borzi ◽  
Liying Guo ◽  
Repush Patil ◽  
Yujie Zhang ◽  
...  

<p>The transboundary Lancang-Mekong River Basin has experienced both cooperation and conflict over the past several decades. Downstream countries (Thailand, Cambodia and Vietnam) rely on Mekong River for fisheries and agriculture, while upstream countries including China and Laos have been constructing dams to generate hydropower. The construction and operation of dams in upstream countries has changed the seasonality of streamflow in downstream countries, affecting their agriculture and fishery benefits. More recently, cooperation between upstream and downstream countries has led to benefit sharing and improved international relations throughout the river basin. In this presentation, we introduce a socio-hydrological model that simulates the hydrological changes in downstream countries resulting from upstream dam operation, based on collection of hydrological, economic and social data in Lancang-Mekong river basin. Our model captures the cooperation and conflict feedback loops which impacts the operation rules of upstream dams. In this way, our study generates understanding of the connections between water resources management and hydro-political dynamics underpinning cooperation and conflicts mechanism in this transboundary river basin.</p>


Teras Jurnal ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 165
Author(s):  
Asril Zevri

<p><em>Sei Sikambing River Basin is one of the Sub Das of Deli River which has an important role in water requirement in Medan City. Rainfall with high intensity is supported by changes in land use causing floods which reach 0.6 m to 1 m from river banks. The purpose of this study was to map the Sei Kambing River basin flood inundation area as information to the public in disaster mitigation efforts. The scope of this research is to analyze the maximum daily rainfall with a return period of 2 to 100 years, analyze flood discharge with a return period of 2 to 100, analyze flood water levels with HECRAS software, and spatially map flood inundation areas with GIS. The results showed that the return flood rate of the Sikambing watershed with a 25-year return period of 211.94 m<sup>3</sup>/s caused the flood level of the Sikambing watershed to be between 1.7 m to 3.7 m. The Sikambing watershed flood inundation area reached an area of 1.19 Km<sup>2</sup> which resulted in the impact of flooding on 5 sub-districts in Medan, namely Medan Selayang District, Medan Sunggal, Medan Petisah, Medan Helvetia, and West Medan.</em><em></em></p>


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (&gt; 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 245-252 ◽  
Author(s):  
C S Sinnott ◽  
D G Jamieson

The combination of increasing nitrate concentrations in the River Thames and the recent EEC Directive on the acceptable level in potable water is posing a potential problem. In assessing the impact of nitrates on water-resource systems, extensive use has been made of time-series analysis and simulation. These techniques are being used to define the optimal mix of alternatives for overcoming the problem on a regional basis.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 896
Author(s):  
Thanh Thu Nguyen ◽  
Makoto Nakatsugawa ◽  
Tomohito J. Yamada ◽  
Tsuyoshi Hoshino

This study aims to evaluate the change in flood inundation in the Chitose River basin (CRB), a tributary of the Ishikari River, considering the extreme rainfall impacts and topographic vulnerability. The changing impacts were assessed using a large-ensemble rainfall dataset with a high resolution of 5 km (d4PDF) as input data for the rainfall–runoff–inundation (RRI) model. Additionally, the prediction of time differences between the peak discharge in the Chitose River and peak water levels at the confluence point intersecting the Ishikari River were improved compared to the previous study. Results indicate that due to climatic changes, extreme river floods are expected to increase by 21–24% in the Ishikari River basin (IRB), while flood inundation is expected to be severe and higher in the CRB, with increases of 24.5, 46.5, and 13.8% for the inundation area, inundation volume, and peak inundation depth, respectively. Flood inundation is likely to occur in the CRB downstream area with a frequency of 90–100%. Additionally, the inundation duration is expected to increase by 5–10 h here. Moreover, the short time difference (0–10 h) is predicted to increase significantly in the CRB. This study provides useful information for policymakers to mitigate flood damage in vulnerable areas.


Author(s):  
Philip E. Bett ◽  
Gill M. Martin ◽  
Nick Dunstone ◽  
Adam A. Scaife ◽  
Hazel E. Thornton ◽  
...  

AbstractSeasonal forecasts for Yangtze River basin rainfall in June, May–June–July (MJJ), and June–July–August (JJA) 2020 are presented, based on the Met Office GloSea5 system. The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon (EASM) index, which is transformed into regional-mean rainfall through linear regression. The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation. The forecasts verify well in terms of giving strong, consistent predictions of above-average rainfall at lead times of at least three months. However, the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period, leading to observed values that lie outside the 95% prediction intervals of the three-month forecasts. The forecasts presented here are consistent with other studies of the 2020 EASM rainfall, whereby the enhanced mei-yu front in early summer is skillfully forecast, but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured. This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors.


Sign in / Sign up

Export Citation Format

Share Document