scholarly journals Fragility Analysis of Gantry Crane Subjected to Near-Field Ground Motions

2020 ◽  
Vol 10 (12) ◽  
pp. 4219
Author(s):  
Qihui Peng ◽  
Wenming Cheng ◽  
Hongyu Jia ◽  
Peng Guo

A gantry crane located in a near-field earthquake-prone area is selected in this paper as an example, and the nonlinear finite element (FE) model is used considering the material nonlinearity including plastic hinges and the second order (P − Δ ) effect with a comprehensive consideration of the components including sill beams, support beams, legs, and trolley girders. The local displacement ratio (LDR) and deflection ratio (DR) are proposed as demand measures (DMs) of the gantry crane, which are utilized to construct a probabilistic seismic demand model (PSDM). Then, the capacity limit states for the gantry crane are defined in this study by performing pushover analysis (POA), known as serviceability, damage control, and collapse prevention, respectively. Moreover, the operating capacity of the crane during an earthquake is further investigated and quantified by operating seismic peak ground acceleration, which is defined as the maximum acceleration when the failure probability is 50%. Finally, the fragility curves and the failure probability of the gantry crane are derived by the above definitions, all of which are pioneering in the seismic design of gantry cranes subjected to near-field ground motions. Some major conclusions are drawn that the horizontal component of an earthquake has a more notable effect on the structural damage of the gantry crane compared to the vertical component, and incremental dynamic analysis can take seismic uncertainty into account and quantify the deformation of gantry crane in more detail.

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2020 ◽  
Vol 110 (4) ◽  
pp. 1506-1516 ◽  
Author(s):  
Susan E. Hough ◽  
Sang-Ho Yun ◽  
Jungkyo Jung ◽  
Eric Thompson ◽  
Grace A. Parker ◽  
...  

ABSTRACT Shaking from the 6 July 2019 Mw 7.1 Ridgecrest, California, mainshock was strongly felt through southern California, but generated relatively minimal structural damage in Ridgecrest. We consider the extent to which a damage proxy map (DPM) generated from satellite-based Synthetic Aperture Radar images can detect minor damage throughout the town of Ridgecrest. The DPM does not, as expected, detect all minor structural damage to individual structures, nor can it distinguish between structural damage and earthquake-related movement that is not consequential. However, the DPM does confirm many instances of minor structural damage to larger structures and groups of smaller structures and in some instances suggests minor structural damage that is not apparent upon visual inspection. Although ambiguous identification of minor damage may not be useful to guide earthquake response, the identification of minor, possibly hidden damage is potentially useful for other purposes. Overall, the DPM confirms that structural damage was commensurate with modified Mercalli intensity no higher than 7 throughout Ridgecrest. We consider both instrumental and intensity data to explore further the distribution of near-field ground motions over the frequency range of engineering concern. Peak ground accelerations and peak ground velocities estimated from “Did You Feel It?” intensity data using the Worden et al. (2012) ground-motion intensity conversion equation (GMICE) are consistent with recorded instrumental data. Both instrumental and estimated mainshock peak accelerations are further consistent with predictions from both the Boore et al. (2014) ground-motion prediction equation (GMPE), but lower than predicted by the Atkinson and Wald (2007) and Atkinson et al. (2014) intensity prediction equations (IPEs). A GMPE such as Boore et al. (2014), which is constrained by a large global dataset, together with a well-constrained GMICE, may thus characterize expected shaking intensities for large earthquakes better than an IPE based on more limited intensity data.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Qihui Peng ◽  
Wen-ming Cheng ◽  
Peng Guo ◽  
Hongyu Jia

Assessing the seismic performance of the gantry crane is significant since the structure is more vulnerable to earthquakes with the increase in size and lifting weight capacity. This paper aims to investigate the seismic response of the gantry crane incorporating near-field ground motions using incremental dynamic and endurance time analysis (IDA and ETA) methods. To model the structure accurately, a nonlinear finite element model of the gantry crane considering the viscoelastic effect is developed in the OpenSees platform. Then, the IDA method is also carried out for a comparison with the ETA method. The results of the two methods are consistent with a correlation of 93.9% while the computational demand of the ETA method is much less than those of the IDA method. To study further, both the seismic incident angle and the application of viscous dampers using the Maxwell model are analyzed and discussed in detail. The results show that seismic incident angle has a distinct influence on the maximum seismic displacement and viscous dampers can significantly reduce the seismic demand of the gantry crane. These findings support the seismic design of gantry cranes and evaluate the structural seismic performance efficiently.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yuyao Cheng ◽  
Jian Zhang ◽  
Jiajia Wu

This paper presents an improved fragility analysis methodology to estimate structural vulnerability for probabilistic seismic risk assessment. Three main features distinguish this study from previous efforts. Firstly, the updated fragility curves generated are based on experimental measurements and possess higher accuracy than those produced using design information only. The updated fragility curves take into consideration both the geometry and material properties, as well as long-term health monitoring data, to reflect the current state of the structure appropriately. Secondly, to avoid arbitrariness when selecting ground motions, probabilistic seismic hazard analysis (PSHA) is adopted to provide suggestions for ground motion selection. By considering the uncertainty of the location and intensity of future earthquakes, the PSHA deaggregation result can help to determine the most probable earthquake scenarios for the specific site. Thus, the suggested ground motions are more realistic, and the seismic demand model is much closer to the actual results. Thirdly, this study focuses on the seismic performance evaluation of a typical self-anchored suspension bridge using the form of fragility curves, which has seldom been studied in the literature. The results show that bearing is the most vulnerable part of a self-anchored suspension bridge, while failure probabilities of concrete towers are relatively lower.


2017 ◽  
Vol 33 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Xin Chu ◽  
James M. Ricles ◽  
Shamim N. Pakzad

This paper presents the seismic fragility assessment of the Smithsonian Institute Museum Support Center (MSC), which sustained appreciable damage during the 2011 Virginia earthquake. A three-dimensional (3-D) finite element model (FEM) for the building was created and validated using measured dynamic characteristics determined from field vibration test data. Two suites of bidirectional ground motions at different hazard levels were applied to the FEM to generate fragility curves for structural as well as nonstructural (storage cabinets) damage. The effect of brace yielding strength on structural and nonstructural damage is also investigated to provide recommendations for future retrofit. The fragility curves show that the spectral acceleration to cause structural damage to the building is not high. Due to low seismicity, however, the probability for the structure to be damaged at the design basis earthquake is small. Nevertheless, the probability for nonstructural damage is considerable, which is an important issue related to the seismic performance of the building.


Author(s):  
Q. Peng

This paper aims to investigate the uplift behavior coupled with the non-linearity both in material properties and in geometry deformations of a typical gantry crane under near-field ground motions. First, the highly nonlinear and time variable model considering the uplift-available boundary condition based on the theory of Mohr-Coulomb friction is established of the gantry crane using the OpenSees platform. Then, a series of time-history analyses on this model structure is performed under three near-field seismic loadings with different exceeding probabilities. Furthermore, the comparison between the uplift-available gantry crane and the fixed crane is also carried out to provide in-depth insight into the structural responses under different boundary conditions. Finally, coupling with the material and geometry inelastic behavior, the uplift response process is modeled in this paper and the seismic incident angle from 0 up to 360 degrees is also examined to quantitatively confirm the prioritization of uplift event and the other inelastic responses. And the new conception of uplift probability is first proposed herein to reveal the nature of uncertainty. It is found that uplift behavior plays an essential role in designing and evaluating the seismic performance of gantry cranes; further, the uplift response increases the seismic demand of the gantry crane structure and even causes collapse under strong ground motions.


Author(s):  
Bledar Kalemi ◽  
Muhammad Farhan ◽  
Daniele Corritore

Abstract Steel storage tanks are critical components of an industrial installation due to their high seismic vulnerability and containment of hazardous materials. Failure of a which, may lead to loss of containment (LOC) triggering domino effects such as explosion, environmental pollution, loss of functionality and disruption of business. Past earthquakes have demonstrated different type of failure modes in steel storage tanks. Although there are plenty of studies related to different failure modes like elephant foot buckling or tank uplifting, there are very few efforts on the sliding behavior of tank. Large displacements caused by the tank sliding can lead to pipe detachment and release of hazardous material which might cause damage propagation. Consequently, this damage state is very important for the Quantitative Seismic Risk Assessment of industrial plants. In order to enumerate the sliding displacement of unanchored steel storage tanks, a simplified numerical model realized with OpenSees platform is proposed. The friction model used in OpenSees is calibrated with the results obtained from ABAQUS FE model. Sliding response of tanks with different D/H ratio is analyzed using the simplified model. Fragility curves for the tank sliding damage state are analytically evaluated for different D/H ratio of the tank using the “cloud method”. Finally, a parametric study is conducted in order to comprehend the influence of different parameters on the sliding behavior such as friction coefficient, tank filling level and the influence of the vertical component of ground motions.


2020 ◽  
Vol 18 (15) ◽  
pp. 6883-6906
Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Rocco Di Filippo ◽  
Oreste S. Bursi

AbstractThis paper aims to investigate the seismic vulnerability of an existing unanchored steel storage tank ideally installed in a refinery in Sicily (Italy), along the lines of performance-based earthquake engineering. Tank performance is estimated by means of component-level fragility curves for specific limit states. The assessment is based on a framework that relies on a three-dimensional finite element (3D FE) model and a low-fidelity demand model based on Gaussian process regression, which allows for cheaper simulations. Moreover, to approximate the system response corresponding to the random variation of both peak ground acceleration and liquid filling level, a second-order design of experiments method is adopted. Hence, a parametric investigation is conducted on a specific existing unanchored steel storage tank. The relevant 3D FE model is validated with an experimental campaign carried out on a shaking table test. Special attention is paid to the base uplift due to significant inelastic deformations that occur at the baseplate close to the welded baseplate-to-wall connection, offering extensive information on both capacity and demand. As a result, the tank performance is estimated by means of component-level fragility curves for the aforementioned limit state which are derived through Monte Carlo simulations. The flexibility of the proposed framework allows fragility curves to be derived considering both deterministic and random filling levels. The comparison of the seismic vulnerability of the tank obtained with probabilistic and deterministic mechanical models demonstrates the conservatism of the latter. The same trend is also exhibited in terms of risk assessment.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bu Seog Ju ◽  
WooYoung Jung

In order to reduce earthquake damage of multifunctional weir systems similar to a dam structure, this study focused on probabilistic seismic risk assessment of the weir structure using the fragility methodology based on Monte Carlo simulation (MCS), with emphasis on the uncertainties of the seismic ground motions in terms of near field induced pulse-like motions and far field faults. The 2D simple linear elastic plain strain finite element (FE) model including soil structure foundations using tie connection method in ABAQUS was developed to incorporate the uncertainty. In addition, five different limit states as safety criteria were defined for the seismic vulnerability of the weir system. As a consequence, the results obtained from multiple linear time history analyses revealed that the weir structure was more vulnerable to the tensile stress of the mass concrete in both near and far field ground motions specified earthquake hazard levels. In addition, the system subjected to near field motions was primarily more fragile than that under far field ground motions. On the other hand, the probability of failure due to the tensile stress at weir sill and stilling basin showed the similar trend in the overall peak ground acceleration levels.


Sign in / Sign up

Export Citation Format

Share Document