scholarly journals Metallic Ribbon-Core Sandwich Panels Subjected to Air Blast Loading

2020 ◽  
Vol 10 (13) ◽  
pp. 4500
Author(s):  
Mahmoud Abada ◽  
Ahmed Ibrahim

Sandwich structures provide a quite promising solution for blast alleviation techniques owing to their lightweight, high strength, and impressive energy absorption capabilities relative to solo metallic plates with equivalent density. The ability of the sandwich structure to withstand blast loading relies on its core topology. This paper numerically investigates the effectiveness of using ribbon shapes as an innovative core topology for sandwich structures subjected to blast loading. The hydro-code program (Autodyn) supported by the finite element program (ANSYS) is adopted to study the dynamic response of various sandwich panels. The accuracy of the finite element (FE) models were verified using available experimental results for a field blast test in the literature. The results show that the developed finite element model can be reliably exploited to simulate the dynamic behavior of the sandwich panels. The trapezoidal (TZ) and triangular (T) corrugated core topologies were selected to highlight the blast-resistant performance of the new ribbon core topology. Applying the ribbon topology to the traditional corrugated core topologies improved their blast performance. The facing front-plate’s deflection of the trapezoidal corrugated ribbon core sandwich structure (TZRC) has been improved by 45.3% and by 76.5% for the back-plate’s deflection, while for the triangular ribbon corrugated core (TRC), the front plate’s defection has been enhanced by 69.3% and by 112.1% for the back plate. The effect of various design parameters on the blast behavior of the Ribbon-Core Sandwich Panels (RCSPs) was investigated. A parametric study was conducted to evaluate performance indicators, including energy dissipated through plastic deformation and plate deflections. Finally, based on the parametric study, the results of this paper were recommended to be used as a guide for designing metallic ribbon sandwich structures with different protection levels.

Author(s):  
Jun Yan ◽  
Cuncun Jiang ◽  
Zhirui Fan ◽  
Qi Xu ◽  
Hongze Du ◽  
...  

The rapid development of additive manufacturing technology provides a new opportunity for the fabrication and research of multi-layer lattice sandwich structures, and thereby some excellent performances can be further discovered. Based on the manufacturing-experiment-analysis technical route, the failure mode of the additive manufactured aluminum multi-layer alloy lattice sandwich structure under quasi-static compression is systematically studied in this paper. Through the combination of experimental observation and finite element analysis, the complex failure mechanism of the multi-layer lattice sandwich structure is revealed. The results show that the multi-layer lattice sandwich structure under quasi-static compression conditions mainly manifests as a layer-by-layer failure mode of the internal lattice structure, which includes the yield, plastic buckling and material damage. At the same time, in comparison with the force–displacement curve and the structural deformation in the key locations, the analysis accuracy of the finite element model can be verified by the compression experiment. Based on the verified finite element model, the most significant influence of different face panel thicknesses, as well the rod radiuses and tilting angles on the energy absorption (EA) is identified via sensitivity analysis. Furthermore, size factors on the structural EA are revealed. This study can provide a helpful guidance for the design of multi-layer lattice sandwich structures in practical applications.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2018 ◽  
Vol 149 ◽  
pp. 02016 ◽  
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

Many engineering facilities are severely damaged by blast loading. Therefore, many manufacturers of sensitive, breakable, and deformed structures (such as facades of glass buildings) carry out studies and set standards for these installations to withstand shock waves caused by explosions. Structural engineers also use these standards in their designs for various structural elements by following the ISO Damage Carve, which links pressure and Impulse. As all the points below this curve means that the structure is safe and will not exceed the degree of damage based on the various assumptions made. This research aims to derive the Iso-Damage curve of a reinforced concrete beam exposed to blast wave. An advanced volumetric finite element program (ABAQUS) will be used to perform the derivation.


Author(s):  
Ioannis T. Georgiou

In this work, the nonlinear coupled dynamics of a sandwich structure with hexagonal honeycomb core are characterized in terms of Proper Orthogonal Decomposition modes. A high fidelity nonlinear finite element model is derived to describe geometric nonlinearity and displacement and rotation fields that govern the coupled dynamics. Contrary to equivalent continuum models used to predict vibration properties of lattice and sandwich structures, a high fidelity finite element model allows for a quite detailed description of the distributed complicated geometric nonlinearity of the core. It was found that the free dynamics excited by a blast load and the forced dynamics excited by a harmonic force posses POD modes which are localized in space and time. The processing of the simulated dynamics by the Time Discrete Proper Transform forms a means to study the nonlinear coupled dynamics of sandwich structures in the context of nonlinear normal modes of vibration and reduced order models.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2018 ◽  
Vol 22 (5) ◽  
pp. 1612-1634 ◽  
Author(s):  
J Jelovica ◽  
J Romanoff

Modeling a periodic structure as a homogeneous continuum allows for an effective structural analysis. This approach represents a sandwich panel as a two-dimensional plate of equivalent stiffness. Known as the equivalent single-layer, the method is used here to analyze bifurcation buckling of three types of sandwich panels with unidirectional stiffeners in the core: truss-core, web-core and corrugated-core panels made of an isotropic material. The transverse shear stiffnesses of these panels can differ by several orders of magnitude, which cause incorrect buckling analysis when using the equivalent single-layer model with the first-order shear deformation theory. Analytical solution of the problem predicts critical buckling loads that feature infinite number of half-waves in the direction perpendicular to the stiffeners. Finite element model also predicts buckling modes that have non-physical, saw-tooth shape with infinite curvature at nodes. However, such unrealistic behavior is not observed when using detailed three-dimensional finite element models. The error in the prediction of the critical buckling load is up to 85% for the cases considered here. The correction of the equivalent single-layer model is proposed by modeling the thick-faces effect to ensure finite curvature. This is performed in the finite element setting by introducing an additional plate with tied deflections to the equivalent single-layer plate. The extra plate is represented with bending and transverse shear stiffness of the face plates. As a result, global buckling is predicted accurately. Guidelines are proposed to identify the sandwich panels where ordinary model is incorrect. Truss-core and web-core sandwich panels need the correction. Corrugated-core panels without a gap between plates in the core have smaller shear orthotropy and do not need the correction. Modeling the thick-faces effect ensures correct results for all cases considered in this study, and thus one should resort to this approach in case of uncertainty whether the ordinary equivalent single-layer model is valid.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


1978 ◽  
Vol 22 (02) ◽  
pp. 110-122
Author(s):  
A. S. Hananel ◽  
E. J. Dent ◽  
E. J. Philips ◽  
S. H. Chang

To avoid the conservativeness in the large surface-effect ship hull design which results from simplifying assumptions in the stress analysis, the hull structure was analyzed as a three-dimensional elastic body. The NASTRAN finite-element program, level 15.0, was selected for use in this analysis as the most suitable program available. A finite-element model representing the true hull stiffness was used in obtaining the internal load and displacement distributions. The inertia effect of the ship masses was included with each set of static loads. This was done by using the Static Analysis with Inertia Relief solution included in NASTRAN. The stress redistribution around cutouts in the hull was treated in a separate study. The interaction between hull and deckhouse was investigated by attaching a model of the deckhouse onto the hull model, and then solving for the appropriate load conditions. The natural frequencies were obtained using a reduced finite-element model of both the hull and hull/deckhouse combination. A new technique was developed for determining the dynamic stresses and their proper superposition on the static stresses.


Author(s):  
Ali Mardanshahi ◽  
Masoud Mardanshahi ◽  
Ahmad Izadi

The main idea of this paper is to propose a nondestructive evaluation (NDE) system for two types of damages, core cracking and skin/core debonding, in fiberglass/foam core sandwich structures based on the inverse eigensensitivity-based finite element model updating using the modal test results, and the artificial neural networks. First, the modal testing was conducted on the fabricated fiberglass/foam core sandwich specimens, in the intact and damaged states, and the natural frequencies were extracted. Finite element modeling and inverse eigensensitivity-based model updating of the intact and damaged sandwich structures were conducted and the parameters of the models were identified. Afterward, the updated finite element models were employed to generate a large dataset of the first five harmonic frequencies of the damaged sandwich structures with different damage sizes and locations. This dataset was adopted to train the machine learning models for detection, localization, and size estimation of the core cracking and skin/core debonding damages. A multilayer perceptron neural network classification model was used for detection of types of damages and also a multilayer perceptron neural network regression model was fitted to the dataset for automatically estimation of the locations and dimensions of damages. This intelligent system of damage quantification was also used to make predictions on real damaged specimens not seen by the system. The results indicated that the extracted natural frequencies from the accurate finite element model, in coordination with the experimental data, and using the artificial neural networks can provide an effective system for nondestructive evaluation of foam core sandwich structures.


Sign in / Sign up

Export Citation Format

Share Document