scholarly journals Comparison of Capillary Flow Porometry (CFP) and Liquid Extrusion Porometry (LEP) Techniques for the Characterization of Porous and Face Mask Membranes

2020 ◽  
Vol 10 (16) ◽  
pp. 5703
Author(s):  
R. I. Peinador ◽  
José I. Calvo ◽  
Roger Ben Aim

This work aims to study the characterization of several membrane filters by using capillary flow porometry (CFP) and liquid extrusion porometry (LEP) to obtain their pore size distributions (PSD) and mean pore diameters (davg). Three polymeric membranes of different materials namely, polyethylene (PET), cellulose nitrate (CN), and FM (face mask), and one inorganic (namely, alumina Al2O3) from ultrafiltration (UF)/microfiltration (MF) and particle separation were analyzed using a pressure constant fluid/liquid extrusion porometer, developed at institute de la filtration et techniques séparatives (IFTS). Several porosimetric fluids have been used to wet and penetrate into the porous/fiber structure. The results show the accuracy of the setup on characterizing membranes in the UF/MF range by CFP, with reasonable agreement with nominal data of the filters. Additionally, LEP extension of the equipment obtained good agreement with nominal data and the CFP results, while filters presenting a microstructure of highly interconnected pores (face mask) resulted in clear differences in terms of resulting PSD and average sizes when CFP and LEP results are compared.

2018 ◽  
Author(s):  
Zeyu Zhang ◽  
Sabine Kruschwitz ◽  
Andreas Weller ◽  
Matthias Halisch

Abstract. We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data upon pore size distributions, including micro computed tomography (μ-CT), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple length scale characterization of the pore space geometry is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of resolution of SIP depend on the usable frequency range (between 0.002 Hz and 100 Hz). The methods with similar resolution show a similar behavior of the cumulative pore volume distribution in the overlapping pore size range. We assume that μ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study shows that a good agreement between the pore radii distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in resolution should be used as reference.


2006 ◽  
Vol 286 (1-2) ◽  
pp. 104-114 ◽  
Author(s):  
Dapeng Li ◽  
Margaret W. Frey ◽  
Yong L. Joo

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1225-1238 ◽  
Author(s):  
Zeyu Zhang ◽  
Sabine Kruschwitz ◽  
Andreas Weller ◽  
Matthias Halisch

Abstract. We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions, including micro computed tomography (μ-CT), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral-induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of resolution of SIP depend on the usable frequency range (between 0.002 and 100 Hz). The methods with similar resolution show a similar behavior of the cumulative pore volume distribution in the overlapping pore size range. We assume that μ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study shows that a good agreement between the pore radius distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in resolution should be used as reference.


2020 ◽  
Author(s):  
Scott C. Hauswirth ◽  
◽  
Majdi Abou Najm ◽  
Christelle Basset

2021 ◽  
Vol 27 (S1) ◽  
pp. 774-775
Author(s):  
Hélène Roberge ◽  
Philippe Moreau ◽  
Estelle Couallier ◽  
Patricia Abellan

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


2011 ◽  
Vol 24 (6) ◽  
pp. 777-788 ◽  
Author(s):  
J.Z. Liang

The structure of the interlayer between matrix and inclusions affect directly the mechanical and physical properties of inorganic particulate-filled polymer composites. The interlayer thickness is an important parameter for characterization of the interfacial structure. The effects of the interlayer between the filler particles and matrix on the mechanical properties of polymer composites were analyzed in this article. On the basis of a simplified model of interlayer, an expression for estimating the interlayer thickness ([Formula: see text]) was proposed. In addition, the relationship between the [Formula: see text] and the particle size and its concentration was discussed. The results showed that the calculations of the [Formula: see text] and thickness/particle diameter ratio ([Formula: see text]) increased nonlinearly with an increase of the volume fraction of the inclusions. Moreover, the predictions of [Formula: see text] and the relevant data reported in literature were compared, and good agreement was found between them.


Sign in / Sign up

Export Citation Format

Share Document