scholarly journals Trends in the Characterization of the Proximal Humerus in Biomechanical Studies: A Review

2020 ◽  
Vol 10 (18) ◽  
pp. 6514
Author(s):  
Angel D. Castro-Franco ◽  
Ismael Mendoza-Muñoz ◽  
Álvaro González-Ángeles ◽  
Samantha E. Cruz-Sotelo ◽  
Ana Maria Castañeda ◽  
...  

Proximal humerus fractures are becoming more common due to the aging of the population, and more related scientific research is also emerging. Biomechanical studies attempt to optimize treatments, taking into consideration the factors involved, to obtain the best possible treatment scenario. To achieve this, the use of finite element analysis (FEA) is necessary, to experiment with situations that are difficult to replicate, and which are sometimes unethical. Furthermore, low costs and time requirements make FEA the perfect choice for biomechanical studies. Part of the complete process of an FEA involves three-dimensional (3D) bone modeling, mechanical properties assignment, and meshing the bone model to be analyzed. Due to the lack of standardization for bone modeling, properties assignment, and the meshing processes, this article aims to review the most widely used techniques to model the proximal humerus bone, according to its anatomy, for FEA. This study also seeks to understand the knowledge and bias behind mechanical properties assignment for bone, and the similarities/differences in mesh properties used in previous FEA studies of the proximal humerus. The best ways to achieve these processes, according to the evidence, will be analyzed and discussed, seeking to obtain the most accurate results for FEA simulations.

Author(s):  
Chike Okoloekwe ◽  
Muntaseer Kainat ◽  
Doug Langer ◽  
Sherif Hassanien ◽  
J.J. Roger Cheng ◽  
...  

Oil and gas pipelines traverse long distances and are often subjected to mechanical forces that result in permanent distortion of its geometric cross section in the form of dents. In order to prioritize the repair of dents in pipelines, dents need to be ranked in order of severity. Numerical modeling via finite element analysis (FEA) to rank the dents based on the accumulated localized strain is one approach that is considered to be computationally demanding. In order to reduce the computation time with minimal effect to the completeness of the strain analysis, an approach to the analytical evaluation of strains in dented pipes based on the geometry of the deformed pipe is presented in this study. This procedure employs the use of B-spline functions, which are equipped with second-order continuity to generate displacement functions, which define the surface of the dent. The strains associated with the deformation can be determined by evaluating the derivatives of the displacement functions. The proposed technique will allow pipeline operators to rapidly determine the severity of a dent with flexibility in the choice of strain measure. The strain distribution predicted using the mathematical model proposed is benchmarked against the strains predicted by nonlinear FEA. A good correlation is observed in the strain contours predicted by the analytical and numerical models in terms of magnitude and location. A direct implication of the observed agreement is the possibility of performing concise strain analysis on dented pipes with algorithms relatively easy to implement and not as computationally demanding as FEA.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Luiz Fernando Cocco ◽  
André Yui Aihara ◽  
Carlos Franciozi ◽  
Fernando Baldy dos Reis ◽  
Marcus Vinicius Malheiro Luzo

2013 ◽  
Author(s):  
Emily Yu ◽  
Lih-Sheng Turng

This work presents the application of the micromechanical variational asymptotic method for unit cell homogenization (VAMUCH) with a three-dimensional unit cell (UC) structure and a coupled, macroscale finite element analysis for analyzing and predicting the effective elastic properties of microcellular injection molded plastics. A series of injection molded plastic samples — which included polylactic acid (PLA), polypropylene (PP), polystyrene (PS), and thermoplastic polyurethane (TPU) — with microcellular foamed structures were produced and their mechanical properties were compared with predicted values. The results showed that for most material samples, the numerical prediction was in fairly good agreement with experimental results, which demonstrates the applicability and reliability of VAMUCH in analyzing the mechanical properties of porous materials. The study also found that material characteristics such as brittleness or ductility could influence the predicted results and that the VAMUCH prediction could be improved when the UC structure was more representative of the real composition.


2013 ◽  
Vol 690-693 ◽  
pp. 2659-2663
Author(s):  
Jian Ping Zhou ◽  
Xiang Feng Zhang ◽  
Hong Sheng Liu ◽  
Jun Yi Gao ◽  
Yan Xu

Residual stress affect the lifetime of weldments directly. Temperature Generated from the welding process is the major reason that influences the microstructure and mechanical properties of the metal weldments. Therefore it is necessary to simulate the temperature field for optimizing the structure of weldments. In this work the three-dimension finite element analysis software SYSWELS was used to simulate T-type tube, and carried on a detailed analysis of temperature field and residual stress in cool process of weld.


2020 ◽  
Vol 10 (4) ◽  
pp. 1545
Author(s):  
Zongyuan Zhang ◽  
Hongyuan Fang ◽  
Bin Li ◽  
Fuming Wang

Concrete pipes are the most widely used municipal drainage pipes in China. When concrete pipes fall into years of disrepair, numerous problems appear. As one of the most common problems of concrete pipes, cracks impact on the deterioration of mechanical properties of pipes, which cannot be ignored. In the current work, normal concrete pipes and those with pre-existing cracks are tested on a full scale under an external compressive load. The effects of the length, depth, and location of cracks on the bearing capacity and mechanical properties of the concrete pipes are quantitatively analyzed. Based on the full-scale tests, three-dimensional finite element models of normal and cracked concrete pipes are developed, and the measured results are compared with the data of the finite element analysis. It is clear that the test measurements are in good agreement with the simulation results; the bearing capacity of a concrete pipe is inversely proportional to the length and depth of the crack, and the maximum circumferential strain of the pipe occurs at the location of the crack. The strain of the concrete pipe also reveals three stages of elasticity, plasticity, and failure as the external load rises. Finally, when the load series reaches the limit of the failure load of the concrete pipe with pre-existing cracks, the pipe breaks along the crack position.


Author(s):  
Hongyan Qi ◽  
Guixiong Gao ◽  
Huixin Wang ◽  
Yunhai Ma ◽  
Hubiao Wang ◽  
...  

The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which makes it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterized the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found that (1) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (2) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (3) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increment of distance from the enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guidelines for the design of bionic machinery and materials.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Wenxiu Zhao ◽  
Haibo Yu ◽  
Zhixing Ge ◽  
Xiaoduo Wang ◽  
Yuzhao Zhang ◽  
...  

Hydrogels can provide a three-dimensional microenvironment for cells and thus serve as an extracellular matrix in a biofabrication process. The properties of hydrogels, such as their porosity and mechanical properties,...


Sign in / Sign up

Export Citation Format

Share Document