scholarly journals An Effective Multi-Label Feature Selection Model Towards Eliminating Noisy Features

2020 ◽  
Vol 10 (22) ◽  
pp. 8093
Author(s):  
Jun Wang ◽  
Yuanyuan Xu ◽  
Hengpeng Xu ◽  
Zhe Sun ◽  
Zhenglu Yang ◽  
...  

Feature selection has devoted a consistently great amount of effort to dimension reduction for various machine learning tasks. Existing feature selection models focus on selecting the most discriminative features for learning targets. However, this strategy is weak in handling two kinds of features, that is, the irrelevant and redundant ones, which are collectively referred to as noisy features. These features may hamper the construction of optimal low-dimensional subspaces and compromise the learning performance of downstream tasks. In this study, we propose a novel multi-label feature selection approach by embedding label correlations (dubbed ELC) to address these issues. Particularly, we extract label correlations for reliable label space structures and employ them to steer feature selection. In this way, label and feature spaces can be expected to be consistent and noisy features can be effectively eliminated. An extensive experimental evaluation on public benchmarks validated the superiority of ELC.

2021 ◽  
Vol 6 (22) ◽  
pp. 51-59
Author(s):  
Mustazzihim Suhaidi ◽  
Rabiah Abdul Kadir ◽  
Sabrina Tiun

Extracting features from input data is vital for successful classification and machine learning tasks. Classification is the process of declaring an object into one of the predefined categories. Many different feature selection and feature extraction methods exist, and they are being widely used. Feature extraction, obviously, is a transformation of large input data into a low dimensional feature vector, which is an input to classification or a machine learning algorithm. The task of feature extraction has major challenges, which will be discussed in this paper. The challenge is to learn and extract knowledge from text datasets to make correct decisions. The objective of this paper is to give an overview of methods used in feature extraction for various applications, with a dataset containing a collection of texts taken from social media.


2021 ◽  
pp. 1-10
Author(s):  
Lei Shu ◽  
Kun Huang ◽  
Wenhao Jiang ◽  
Wenming Wu ◽  
Hongling Liu

It is easy to lead to poor generalization in machine learning tasks using real-world data directly, since such data is usually high-dimensional dimensionality and limited. Through learning the low dimensional representations of high-dimensional data, feature selection can retain useful features for machine learning tasks. Using these useful features effectively trains machine learning models. Hence, it is a challenge for feature selection from high-dimensional data. To address this issue, in this paper, a hybrid approach consisted of an autoencoder and Bayesian methods is proposed for a novel feature selection. Firstly, Bayesian methods are embedded in the proposed autoencoder as a special hidden layer. This of doing is to increase the precision during selecting non-redundant features. Then, the other hidden layers of the autoencoder are used for non-redundant feature selection. Finally, compared with the mainstream approaches for feature selection, the proposed method outperforms them. We find that the way consisted of autoencoders and probabilistic correction methods is more meaningful than that of stacking architectures or adding constraints to autoencoders as regards feature selection. We also demonstrate that stacked autoencoders are more suitable for large-scale feature selection, however, sparse autoencoders are beneficial for a smaller number of feature selection. We indicate that the value of the proposed method provides a theoretical reference to analyze the optimality of feature selection.


Malware is a serious threat to individuals and users. The security researchers present various solutions, striving to achieve efficient malware detection. Malware attackers devise detection avoidance techniques to escape from detection systems. The key challenge is that growth of malware increases every hour, leading to large damages to users’ privacy. The training process takes much longer time, mining the unnecessary features. Feature Selection is effective in achieving unique feature set in detecting malware. In this paper, we propose a malware detection system using hybrid feature selection approach to detect malware efficiently with a reduced feature set. Machine learning based classification is performed on eight classifiers with two malware datasets. The experiments were done without and with feature selection. The empirical results show that the classification using selected feature set and XGB classifier identifies malware efficiently with an accuracy of 98.9% and 99.26% for the two datasets.


2021 ◽  
Vol 5 (4) ◽  
pp. 395
Author(s):  
Muhammad Aqil Haqeemi Azmi ◽  
Cik Feresa Mohd Foozy ◽  
Khairul Amin Mohamad Sukri ◽  
Nurul Azma Abdullah ◽  
Isredza Rahmi A. Hamid ◽  
...  

Distributed Denial of Service (DDoS) attacks are dangerous attacks that can cause disruption to server, system or application layer. It will flood the target server with the amount of Internet traffic that the server could not afford at one time. Therefore, it is possible that the server will not work if it is affected by this DDoS attack. Due to this attack, the network security environment becomes insecure with the possibility of this attack. In recent years, the cases related to DDoS attacks have increased. Although previously there has been a lot of research on DDoS attacks, cases of DDoS attacks still exist. Therefore, the research on feature selection approach has been done in effort to detect the DDoS attacks by using machine learning techniques. In this paper, to detect DDoS attacks, features have been selected from the UNSW-NB 15 dataset by using Information Gain and Data Reduction method. To classify the selected features, ANN, Naïve Bayes, and Decision Table algorithms were used to test the dataset. To evaluate the result of the experiment, the parameters of Accuracy, Precision, True Positive and False Positive evaluated the results and classed the data into attacks and normal class. Hence, the good features have been obtained based on the experiments. To ensure the selected features are good or not, the results of classification have been compared with the past research that used the same UNSW-NB 15 dataset. To conclude, the accuracy of ANN, Naïve Bayes and Decision Table classifiers has been increased by using this feature selection approach compared to the past research.


Sign in / Sign up

Export Citation Format

Share Document