scholarly journals Triaxial Compression Performance Research of Steel Slag Concrete on the Unified Strength Theory

2020 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Zhiheng Deng ◽  
Jingkai Zhou ◽  
Beiquan Chen ◽  
Xiaoyan Wen ◽  
Bing Liu

To better explore the mechanical properties of steel slag concrete (SSC) under triaxial compression, true triaxial tests were performed on SSC with three replacement ratios (30%, 70%, 100%) by a servo-controlled setup (TAWZ-5000/3000). Through the test, failure modes, peak stress, and corresponding strain of SSC are obtained. Results show that the failure modes of SSC are plate-splitting and slant-shear. Compared with the corresponding uniaxial strength, the triaxial compressive strength of SSC is significantly improved and is influenced by the stress ratio and the replacement ratio. Finally, based on unified strength theory, the strength failure criterion formula of SSC with different replacement rates under triaxial compression is given.

2007 ◽  
Vol 340-341 ◽  
pp. 1267-1272
Author(s):  
Hang Zhou Li ◽  
Hong Jian Liao ◽  
Kyoji Sassa ◽  
Gong Hui Wang

According to unified strength parameters obtained from unified strength theory, the slope of critical state line is modified to reflect critical states of different geomaterials under general stress states. Yield function that can consider the effect of the third deviatoricic invariant is proposed, and an elasto-plastic constitutive model is established by adopting non-associated flow rules; furthermore, methods of overcoming singular points on the yield surface are discussed. The proposed model is verified by true triaxial tests of clay, and results show that the model can well predict stress-strain relationships.


2012 ◽  
Vol 468-471 ◽  
pp. 2521-2527
Author(s):  
Xue Ying Zhang

Strain softening model;Unified strength theory;Rockmass deterioration model;FLAC3D Abstract:Aiming at the problem that traditional elasto-plastic constitutive models have not been successful in predicting the depth and extent of brittle failed of hard rocks under high geo-stress condition, a new rockmass deterioration model(RDM) based on the unified strength theory is put forward in the basis of strain softening model and cohesion weaking and friction strengthening (CWFS)model. In the new model, the influence of intermediatemain stress to characteristic of rockmechanics is considered. Based on the method of lagrangian finite difference, a finite difference format of unified strain- softening elastoplastic model with strength parameters of c and φ is established. The constitutive unified elastoplastic model is imported into FLAC3D using a dynamic-link library file developed by VC++.Based on the new model, the traditional triaxial tests (with different confining pressure) and true triaxial tests (with intermediate principal stress ratio) are simulated in FLAC3D, and the measured data are compared with the results that are are simulated by strain softening model and CWFS model. The analytic results suggest that the rockmass deterioration model based on the twin shear unified strength theory has more strong applicability


1992 ◽  
Vol 38 (128) ◽  
pp. 65-76 ◽  
Author(s):  
P. Kalifa ◽  
G. Ouillon ◽  
P. Duval

AbstractTriaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as on strength and strain at the peak stress, was investigated. In the uniaxial tests, we measured the evolution of elastic and non-elastic components of deformation with the stress-strain history. The concept of effective stress, with a single scalar damage variable, was used to calculate the effect of microcracking on the strain components.


2013 ◽  
Vol 351-352 ◽  
pp. 337-341
Author(s):  
Qian Zhu ◽  
Jun Hai Zhao ◽  
Yan Li ◽  
Peng Wu ◽  
Su Wang

With consideration of the intermediate principal stress,the calculation formula of bearing capacity of RPC filled steel tube columns under axial compression is deduced based on the twin shear unified strength theory. Combining with the bond-slip theory,new ultimate bearing capacity formula is derived with the highest regard for bond stress. Compared with the theoretical result and the experimental data,good agreement can be found. The results show that unified strength theory and the bond-slip theory are versatile in theoretical analysis of the column. The analysis results can be provided for the optimum design of RPC filled steel tube and the solution has an important practical value for engineering application.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuai Liu ◽  
Gengshe Yang ◽  
Xihao Dong ◽  
Yanjun Shen ◽  
Hui Liu

The lateral unloading strength and deformation of surrounding frozen rock are the key parameters for safety evaluation of frozen shaft construction. A low-temperature and high-pressure rock triaxial test system was used to simulate freezing construction, and a constant axial pressure unloading confining pressure test was carried out on frozen sandstone. The effects of freezing temperature, initial confining pressure, and unloading rate on the strength, deformation, and failure modes of frozen sandstone are studied. The main results of the study are as follows: (1) under the initial confining pressure of 20 MPa, the temperature of the sandstone decreases from 20°C to –5°C, and the peak stress and elastic modulus of triaxial compression increase by approximately 3 times. Under lateral unloading conditions, the peak stress of frozen sandstone is about 2∼3 times that of 20°C sandstone, and the peak strain of 20°C sandstone is smaller than that of frozen sandstone. The temperature of frozen sandstone decreases and the rate of increase in the peak stress of triaxial compression is slightly less than the rate of increase in the peak stress of lateral unloading. (2) The initial confining pressure of frozen sandstone increases, the growth rate of axial and radial strain increases, the radial strain dominates the failure process, and the lateral unloading strength decreases significantly. (3) The lateral unloading rate of frozen sandstone increases, the peak strength increases, and the axial and radial strain decrease. At a low unloading rate, partial creep deformation occurs. (4) The frozen rock sample undergoes tensile splitting failure under lateral unloading. According to the stress-strain curve of the frozen rock sample, the relationship between changes in the deformation modulus and changes in the confining pressure unloading amount during the unloading process of the rock sample is obtained.


2013 ◽  
Vol 357-360 ◽  
pp. 727-731
Author(s):  
Min Sheng Zheng ◽  
Xiao Hua Ma ◽  
Guo Qiang Liang

By using the 2000kN static and dynamic triaxial test instrument the mechanical properties of the low elastic modulus concrete is studied. The results of the experiment show that the failure modes of the unconfined compression test is crushing-type and the failure modes of the triaxial compression test is shearing-type. Utilizing the Mohr - Coulomb strength theory to design the low elastic modulus concrete cut-off wall is more in line with the actual engineering, but utilizing the first strength theory to design the dam cut-off wall is safer.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Wei Chen ◽  
Wen Wan ◽  
Shuailong Lian ◽  
Senlin Xie ◽  
Yu Zhou ◽  
...  

Roadway excavation changes the original equilibrium stress state of the rock mass, resulting in the loading and unloading of the surrounding rock near the free surface. After the excavation, the tangential stress increases and the radial stress decreases, which mainly cause deformation and collapse of the roadway. In order to study the strength characteristics of the surrounding rock after the excavation, one effective way is to carry out triaxial compression tests on small surrounding rock samples. Therefore, this paper focuses on the triaxial compression mechanical propertiesof thick-walled cylinder granites with an electrohydraulic, servo-controlled rock mechanics testing system (MTS-815). It studies how different pore sizes and confining pressures affect the triaxial compressive strength (TCS), deformation, and failure modes of granite samples. The results are as follows: (1) Under triaxial compression, the stress-strain curves have no obvious yield stage, and the peak TCS increases with the confining pressure (σ3). When σ3 is low, there is little difference in the TCS between the complete specimen and the thick-walled cylinders. When σ3 reaches 30 MPa∼40 MPa, the TCS of samples with apertures of 15 mm and 20 mm are obviously lower. The σ3 has an obvious influence on the elastic modulus of thick-walled cylinder granites. (2) Shearing and splitting are the main failure modes under triaxial compression. When σ3 is low, shear failure appears. As σ3 reaches 30 MPa∼40 MPa, split failure occurs. The area of the fracture surface increases with σ3. (3) As σ3 grows, the influence parameter (m) of the three-dimensional Hoek-Brown criterion increases. Under the same σ3, the value of m presents a decreasing trend from the outer wall to the inner wall, which means the bearing capacity keeps getting lower and lower. As a result, the inner wall is most likely to be damaged. The theoretical analysis results agree well with the tests.


1992 ◽  
Vol 38 (128) ◽  
pp. 65-76 ◽  
Author(s):  
P. Kalifa ◽  
G. Ouillon ◽  
P. Duval

AbstractTriaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as on strength and strain at the peak stress, was investigated. In the uniaxial tests, we measured the evolution of elastic and non-elastic components of deformation with the stress-strain history. The concept of effective stress, with a single scalar damage variable, was used to calculate the effect of microcracking on the strain components.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Taoli Xiao ◽  
Mei Huang ◽  
Min Gao

A series of rock-like specimens with specific sizes and fracture inclinations was created in the laboratory. The different effects of seepage pressure on the deformation and failure characteristics between a conventional triaxial compression test and a triaxial permeability test were studied using a servo-controlled testing machine. Furthermore, the change in the permeability of single-fractured specimens was explored based on a triaxial permeability test. The results were as follows. Compared with those observed in the conventional triaxial compression test, the peak stress and corresponding axial strain decrease under seepage pressure in the triaxial permeability test, while the deformation modulus increased. With the increase of fracture length, the peak stress of specimen decreases due to the seepage pressure and the specimen showed tensile failure horizontally. The failure mode of the single-fractured specimens was changed by the seepage pressure. A closed relationship was observed between the failure modes and the permeability-stress curves. A shear failure along the crack surface will occur when the permeability abruptly changed later than the peak stress point. The dramatic change in the permeability indicated that the permeability channel was extended or new seepage paths were created. These conclusions can provide a valuable theoretical reference for the numerical simulation of excavation and design in stability analysis of jointed rock masses.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Xia ◽  
Erlei Bai ◽  
Jinyu Xu ◽  
Gaojie Liu

To explore the mechanical properties of concrete under true triaxial static compressive load after sulfate attack, uniaxial static compression test and true triaxial static compression test at four stress ratios were carried out on concrete specimens immersed in 15% sulfate solution for 0–120 days by the integrated true triaxial static and dynamic load testing system, and the variation of performance indicators such as the strength and deformation of concrete under the coupling action of sulfate attack and complex stress state was analyzed. The results show that the uniaxial compressive strength of concrete increases at the beginning and then decreases with the increase of sulfate attack time and reaches the peak on the 30th day, with an increase rate of 16.57%; the strength of concrete under triaxial compression increases significantly, and the maximum triaxial compressive strength is 3.18 times of uniaxial compressive strength under the combination of 0-day sulfate attack and 0.2 : 0.8 stress ratio; and the deterioration of concrete under sulfate attack is more prominent at high confining pressure, and as the sulfate attack worsens, the sensitivity of triaxial compressive strength of concrete to lateral compressive stress is reduced. In conclusion, triaxial compression can significantly enhance the ductility of concrete by playing a role in restraining the deformation and cracking of concrete after sulfate attack.


Sign in / Sign up

Export Citation Format

Share Document