scholarly journals Biomethane Potential of Sludges from a Brackish Water Fish Hatchery

2021 ◽  
Vol 11 (2) ◽  
pp. 552
Author(s):  
Francesco da Borso ◽  
Alessandro Chiumenti ◽  
Giulio Fait ◽  
Matia Mainardis ◽  
Daniele Goi

The development of intensive aquaculture is facing the challenge of the sustainable management of effluents. The reproductive sectors (i.e., hatcheries) mainly use water recirculation systems (RAS), which discharge a portion of wastewater. Anaerobic digestion (AD) could reduce the environmental impact of this waste stream while producing biogas. The study is focused on the biochemical methane potential (BMP) of brackish fish hatchery sludges. Wastewater was concentrated by microfiltration and sedimentation and thickened sludges were treated in a BMP system with different inoculum/substrate (I/S) volatile solids ratios (from 50:1 to no inoculum). The highest I/S ratio showed the highest BMP (564.2 NmL CH4/g VS), while different I/S ratios showed a decreasing trend (319.4 and 127.7 NmL CH4/g VS, for I/S = 30 and I/S = 3). In absence of inoculum BMP resulted of 62.2 NmL CH4/g VS. The kinetic analysis (modified Gompertz model) showed a good correlation with the experimental data, but with a long lag-phase duration (from 14.0 to 5.5 days) in particular with the highest I/S. AD applied to brackish water sludges can be a promising treatment with interesting methane productions. For a continuous, full-scale application further investigation on biomass adaptation to salinity and on retention times is needed. Further experimental tests are ongoing.

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1200
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents magnetized nanoparticles (NPs) as a catalyst to accelerate anaerobic digestion (AD) potential for clean and ecofriendly energy (biogas) from wastewater settings. The effects of iron oxides (Ms) and aluminum sulphate (Alum) were investigated using two chronological experiments: (i) the Jar test technique to generate residue slurry as organic fertilizer potential and (ii) a magnetized biochemical methane potential (MBMP) system for biogas production at mesophilic conditions for 21 days. X-ray diffraction and Fourier Transform Infrared spectroscopy were carried out to establish the Ms Crystallite and active functional groups respectively. Scanning electronic microscopy coupled with energy dispersive X-ray spectrometer and elemental analysis were used to track and confirm NPs inclusion after the post-AD process. Coagulation at 50 mg/L and magnetic exposure time of 30 min showed above 85% treatability performance by Ms as compared to 70% for Alum. Owing to the slow kinetics of the AD process, additional NPs content in the digesters coupled with an external magnetic field improved their performance. Cumulative biogas yields of 1460 mL/d > 610 mL/d > 505 mL/d for Ms > Control > Alum respectively representing 80% > 61% > 52% of CH4 were attained. The modified Gompertz model shows that the presence of NPs shortens the lag phase of the control system with kinetics rate constants of 0.285 1/d (control) to 0.127 1/d (Ms) < 0.195 1/d (Alum).


2019 ◽  
Vol 38 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Mohamad Adghim ◽  
Mohamed Abdallah ◽  
Suhair Saad ◽  
Abdallah Shanableh ◽  
Majid Sartaj

This study aimed to evaluate the methane potential of mono- and co-digested dairy farm wastes. The tested substrates included manure from lactating, dry, and young cows, as well as waste milk and feed waste. The highest methane yield was achieved from the lactating cow manure, which produced an average of 412 L of CH4 kg−1 volatile solids, followed by young and dry cow manures (332 and 273 L of CH4 kg−1 volatile solids, respectively). Feed and milk yielded an average of 325 and 212 L of CH4 kg−1 volatile solids, respectively. Co-digesting the manures from lactating and young cows with feed improved methane production by 7%. However, co-digesting the dry cow manure with feed achieved only 85% of the calculated methane yield. Co-digesting manure and milk at a ratio of 70:30 enhanced the methane potential from lactating, dry, and young cow manures by 19, 30, and 37%, respectively. Moreover, co-digesting lactating, dry, and young cow manures with milk at a ratio of 30:70 enhanced the methane yield by 60, 30, and 88%, respectively. The cumulative methane production of all samples was accurately described using the Gompertz model with a maximum error of 10%. Carbohydrates contributed the most to methane potential, while proteins and lipids were limiting.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 284
Author(s):  
Xiaojue Li ◽  
Naoto Shimizu

To enhance anaerobic fermentation during food waste (FW) digestion, pretreatments can be applied or the FW can be co-digested with other waste. In this study, lipase addition (LA), hydrothermal pretreatment (HTP), and a combination of both methods (HL) were applied to hydrolyze organic matter in FW. Furthermore, the effects of crude glycerol (CG), which provided 5%, 10%, and 15% of the volatile solids (VS) as co-substrate (denoted as CG5, CG10, and CG15, respectively), on the anaerobic digestion of FW were assessed. With an increasing proportion of CG in the co-digestion experiment, CG10 showed higher methane production, while CG15 negatively affected the anaerobic digestion (AD) performance owing to propionic acid accumulation acidifying the reactors and inhibiting methanogen growth. As the pretreatments partially decomposed hard-to-degrade substances in advance, pretreated FW showed a stronger methane production ability compared with raw FW, especially using the HL method, which was significantly better than co-digestion. HL pretreatment was shown to be a promising option for enhancing the methane potential value (1.773 NL CH4/g VS) according to the modified Gompertz model.


2019 ◽  
Vol 11 (24) ◽  
pp. 7170 ◽  
Author(s):  
Jae Hoon Jeung ◽  
Woo Jin Chung ◽  
Soon Woong Chang

In this paper, the anaerobic co-digestion of three different organic wastes, including livestock manure, slaughterhouse waste, and agricultural by-products (ABs), was carried out to enhance the efficiency of mono-digestion of livestock manure. The characteristics of co-digestion were evaluated at different mixing ratios. The experiment was performed using the Batch test and was divided into two parts. The first experimental section (EXP. 1) was designed to evaluate the seasonal characteristics of ABs, which are the different ratios of fruits and vegetables, where the mixing ratio of spring (fruits:vegetables = 3:7) showed the highest biogas yield (0.24 m3/kg volatile solids). The second experiment (EXP. 2) was conducted by using ABs in the ratio that gave the highest biogas yield in EXP. 1 in combinations of three wastes livestock manure, slaughterhouse waste, and ABs. The highest CH4 yield was 0.84 m3/kg volatile solids (VS), which was obtained with a mixing ratio that had even amounts of the three feedstocks. In addition, the results of the second biochemical methane potential test, which assessed the digestive efficiency according to the mixing ratio of the three types of organic waste, showed that the CH4 production rate of the merged digestion was approximately 1.03–1.29 times higher than that of the mono-digestion of livestock manure. The results of our experiment were verified using the modified Gompertz model, the results of which were relatively similar to the experimental results.


Author(s):  
Runze Li ◽  
Rebecca C Deed

Abstract It is standard practice to ferment white wines at low temperatures (10-18 °C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on chromosomes VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5 °C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidate ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5 °C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on chromosome XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.


2021 ◽  
Vol 9 (3) ◽  
pp. 486
Author(s):  
Mi Seon Kang ◽  
Jin Hwa Park ◽  
Hyun Jung Kim

The objective of the study was to develop a predictive model of Salmonella spp. growth in pasteurized liquid egg white (LEW) and to estimate the salmonellosis risk using the baseline model and scenario analysis. Samples were inoculated with six strains of Salmonella, and bacterial growth was observed during storage at 10–37 °C. The primary models were developed using the Baranyi model for LEW. For the secondary models, the obtained specific growth rate (μmax) and lag phase duration were fitted to a square root model and Davey model, respectively, as functions of temperature (R2 ≥ 0.98). For μmax, the values were satisfied within an acceptable range (Af, Bf: 0.70–1.15). The probability of infection (Pinf) due to the consumption of LEW was zero in the baseline model. However, scenario analysis suggested possible salmonellosis for the consumption of LEW. Because Salmonella spp. proliferated much faster in LEW than in egg white (EW) during storage at 20 and 30 °C (p < 0.01), greater Pinf may be obtained for LEW when these products are stored at the same conditions. The developed predictive model can be applied to the risk management of Salmonella spp. along the food chain, including during product storage and distribution.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1952
Author(s):  
Ayobami Orangun ◽  
Harjinder Kaur ◽  
Raghava R. Kommalapati

The improper management of goat manure from concentrated goat feeding operations and food waste leads to the emission of greenhouse gasses and water pollution in the US. The wastes were collected from the International Goat Research Center and a dining facility at Prairie View A&M University. The biochemical methane potential of these two substrates in mono and co-digestion at varied proportions was determined in triplicates and processes were evaluated using two nonlinear regression models. The experiments were conducted at 36 ± 1 °C with an inoculum to substrate ratio of 2.0. The biomethane was measured by water displacement method (pH 10:30), absorbing carbon dioxide. The cumulative yields in goat manure and food waste mono-digestions were 169.7 and 206.0 mL/gVS, respectively. Among co-digestion, 60% goat manure achieved the highest biomethane yields of 380.5 mL/gVS. The biodegradabilities of 33.5 and 65.7% were observed in goat manure and food waste mono-digestions, while 97.4% were observed in the co-digestion having 60% goat manure. The modified Gompertz model is an excellent fit in simulating the anaerobic digestion of food waste and goat manure substrates. These findings provide useful insights into the co-digestion of these substrates.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Harjinder Kaur ◽  
Raghava R. Kommalapati

AbstractAnaerobic co-digestion is widely adopted to enhance process efficacy by balancing the C/N ratio of the feedstock while converting organic wastes to biomethane. Goat manure (GM) and cotton gin trash (CGT) were anaerobically co-digested in triplicate batch bioreactors. The process was optimized and evaluated utilizing mathematical equations. The liquid fraction of the digestate was analyzed for nitrate and phosphate. The co-digestions with 10 and 20% CGT having the C/N ratios of 17.7 and 19.8 yielded the highest and statistically similar 261.4 ± 4.8 and 262.6 ± 4.2 mL/gvs biomethane, respectively. The biodegradability (BD) of GM and CGT was 94.5 ± 2.7 and 37.6 ± 0.8%, respectively. The BD decreased proportionally with an increase in CGT percentage. The co-digestion having 10% CGT yielded 80–90% of biomethane in 26–39 d. The modified Gompertz model-predicted and experimental biomethane values were similar. The highest synergistic effect index of 15.6 ± 4.7% was observed in GM/CGT; 30:70 co-digestion. The concentration of nitrate and phosphate was lower in the liquid fraction of digestate than the feedstocks, indicating that these nutrients stay in the solid fraction. The results provide important insights in agro-waste management, further studies determining the effects of effluent application on plants need to be conducted.


Sign in / Sign up

Export Citation Format

Share Document