scholarly journals Reliability Verification of Existing RC Structures Using Partial Factors Approaches and Site-Specific Data

2021 ◽  
Vol 11 (4) ◽  
pp. 1653
Author(s):  
Carlos Lara ◽  
Peter Tanner ◽  
Carlos Zanuy ◽  
Ramon Hingorani

The assessment of an existing structure to determine its suitability for present and future use entails different sorts of problems than encountered when designing new structures. The differences revolve essentially around the nature of the information available. In existing structures, deteriorated or otherwise, the accuracy of the models used for such assessments can usually be improved by acquiring more data. The most accurate way to find actual load and resistance would be to conduct a probabilistic analysis using site data. This is a time-consuming process, however, calling for a working knowledge of probabilistic methods that may not be suited to everyday use by practising engineers. For this reason, in the past few years various studies have been conducted to develop assessment approaches, compatible with Eurocodes, which include the same verification format as normally applied for designing new structures. In this paper, the application of several of these approaches is illustrated by means of the reliability verification of one of the main beams of the reinforced concrete structure of an industrial building from the 1940s, recently transformed into a cultural centre. The obtained results are discussed and compared to the findings of a full probabilistic analysis.

2021 ◽  
Vol 11 (6) ◽  
pp. 2553
Author(s):  
Sang-Hyun Kim ◽  
Jong-Sup Park ◽  
Woo-Tai Jung ◽  
Jae-Yoon Kang

Various methods for strengthening existing structures have been developed owing to the increase in human and property damages caused by the deterioration of structures. Among the various reinforcing methods, the external prestressing method increases the usability and safety of a structure by directly applying tension to the weak tensile area that suffers the greatest deflection during the structure usage. The external prestressing method is advantageous in reducing cracks caused by the introduced tension and restoration of the deflection. Since the strengthening method is applied to deterioration bridges, the strengthening effect is affected by the condition of the existing structure. However, studies on the strengthening effect according to the degree of deterioration are insufficient. Therefore, the behavior according to the strengthening status was analyzed, and the strengthening effect was identified in this study by simulating the deteriorated bridge, reducing the compressive strength and reinforcement quantity, and conducting a four-point loading test. As a result of the experiment, a reinforcement effect of 215% crack load, 161% yield load, and the difference in behavior according to the reinforcement parameters were confirmed.


2014 ◽  
Vol 633-634 ◽  
pp. 1140-1147
Author(s):  
Vladimir Alekseevich Sokolov

The article suggests an approach to determine structural elements technical condition, based on the mathematical probabilistic apparatus of technical diagnostics. Diagnostics are performed using probabilistic methods of complex technical systems conditions recognition. Probabilistic parameters are calculated according to Bayes’s rule. The paper shows a diagnostics example of intermediate floor elements and systems in the old urban development building. Both the suggested method and information theory methods are used during diagnostics.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Alireza Panjsetooni ◽  
Norazura Muhamad Bunnori ◽  
Amir Hossein Vakili

Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.


2018 ◽  
Vol 188 ◽  
pp. 03010
Author(s):  
Maria Basdeki ◽  
Argyro Drakakaki ◽  
Charis Apostolopoulos

Greece is an earthquake prone area, which is also exposed to coastal environment. Most existing buildings present common characteristics, concerning quality of the materials and environmental conditions [1].The vulnerability of these structures is exteriorized under powerful seismic loads. This is because they were designed, according to older regulations, primarily to bear vertical loads and secondarily to bear horizontal loads, an indicative sign of the absence of anti-seismic design. Designing and evaluation of the seismic performance of existing structures is a really complex issue, because structural degradation phenomenon is related to both corrosion damage of steel reinforcement on RC structures and high vulnerability of masonry. Precisely, the inadequate seismic performance of masonry structures, which is recorded under intense earthquakes, is attributed to the characteristics of masonry and to the ageing phenomena of the materials. For the seismic inspection of masonry structures, both EC2 and OASP can be used [3], although there is often a great misunderstanding concerning the range of the maximum permissible interventions, the financial inability and modern perceptions of redesigning [2]. On the other hand, in the case of RC structures, there is no prediction –concerning the corrosion factor- included in the international regulations and standards. In the current study is presented an experimental procedure, concerning a RC column before and after corrosion. An estimation concerning the drop of its mechanical performance has taken place, indicating the importance of the corrosion factor. Additionally, an existing monumental masonry tower building, was subjected to seismic evaluation [4]. Both OASP and EC2 inspection methods were used. The results pointed out that, for medium–intensity earthquakes, both analytical and approximate methods are respectable and reliable.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3879 ◽  
Author(s):  
Joyraj Chakraborty ◽  
Andrzej Katunin ◽  
Piotr Klikowicz ◽  
Marek Salamak

The damage in reinforced concrete (RC) structures can be induced either by the dynamic or static load. The inspection technologies available today have difficulty in detecting slowly progressive, locally limited damage, especially in hard-to-reach areas in the superstructure. The four-point bending test on the benchmark RC structure was used as a test of the quality and sensitivity of the embedded sensors. It allowed assessment of whether any cracking and propagation that occurs with the embedded sensors can be detected. Various methods are used for the analysis of the ultrasonic signals. By determining the feature from the ultrasonic signals, the changes in the whole structure are evaluated. The structural degradation of the RC benchmark structure was tested using various non-destructive testing methods to obtain a comprehensive decision about structural condition. It is shown that the ultrasonic sensors can detect a crack with a probability of detection of 100%, also before it is visible by the naked eye and other techniques, even if the damage is not in the direct path of the ultrasonic wave. The obtained results confirmed that early crack detection is possible using the developed methodology based on embedded and external sensors and advanced signal processing.


2002 ◽  
Vol 5 (04) ◽  
pp. 302-310
Author(s):  
Herman G. Acuna ◽  
D.R. Harrell

Summary Probabilistic methods have introduced inconsistent interpretations of how they should be applied while still complying with reserves certification guidelines. The objective of this paper is to present and discuss some pitfalls commonly encountered in the application of probabilistic methods to evaluate reserves. Several regulatory guidelines that should be followed during the generation of recoverable hydrocarbon distributions are discussed. An example also is given to understand the evolution of reserves categories as a function of probabilities. Most of the conflicting reserves interpretations can be attributed to the constraints of regulatory bodies [e.g., the U.S. Securities and Exchange Commission (SEC)] and the current SPE/World Petroleum Congresses (WPC) reserves definitions in which reserves categories are expressed in terms of the probabilities of being achieved. For example, proved reserves are defined as those hydrocarbon volumes with at least a 90% probability of being equaled or exceeded (P90). Unfortunately, these definitions alone fall short as guidance on how to derive the distributions from which these percentiles will be calculated. This may lead to distributions that do not comply with the remaining guidelines. While a P90 can be calculated from a noncomplying distribution, proved reserves may not be assigned at this percentile level. Introduction In 1997, new reserves definitions were drafted and introduced by SPE and WPC. For the first time, these reserves definitions included some language to address the increased interest in probabilistic analysis to estimate hydrocarbon reserves. Proved reserves were defined, in part, as those volumes of recoverable hydrocarbons with " . . . a high degree of confidence that the quantities will be recovered. If probabilistic methods are used, there should be at least a 90% probability that the quantities actually recovered will equal or exceed the estimate."1 The interpretation of this definition may be that satisfying the P90 criteria is sufficient to define proved reserves. We will discuss later in this paper why defining proved reserves as the P90 of any distribution is not always appropriate. Also, the definitions do not specify at what level the evaluator should apply the P90 test (i.e., is it at the field level or the total portfolio level?). These points are further clarified in the 2001 update of the SPE/WPC definitions.2 Probable reserves were then described in the SPE/WPC definitions as those recoverable hydrocarbon volumes that " . . . are more likely than not to be recoverable. In this context, when probabilistic methods are used, there should be at least a 50% probability that the quantities actually recovered will equal or exceed the sum of estimated proved plus probable reserves."1 Possible reserves were defined as those recoverable hydrocarbon volumes that " . . . are less likely to be recoverable than probable reserves. In this context, when probabilistic methods are used, there should be at least a 10% probability that the quantities actually recovered will equal or exceed the sum of estimated proved plus probable plus possible reserves."1 The SEC does not recognize probable and possible reserves. The SEC's guidelines for reporting proved reserves are set forth in its Regulation S-X, Rule 4-10 and subsequent clarifying bulletins. In Regulation S-X, Rule 4-10, there are no guidelines for the interpretation of probabilistic analysis. The regulation defines proved reserves as those recoverable hydrocarbon volumes with " . . . reasonable certainty to be recoverable in future years from known reservoirs . . ."3 Both the SPE/WPC and SEC proved reserves definitions have several other requirements that are usually applicable to deterministic methods that may conflict with probabilistic analysis if not properly incorporated. Evaluators of reserves should exercise caution when using probabilistic methods to ensure compliance with the reserves definitions adopted by the SEC and SPE/WPC. Caution is required because there are certain situations in which indiscriminate application of probabilistic methods may produce results that are inconsistent with the reserves definitions. For example, the SEC definition of proved reserves does not explicitly recognize the use of the probabilistic method and in no way allows for the probabilistic method to be used in such a manner as to violate any term of that definition. In this paper, we will first present a short definition of probabilistic analysis and the risks and benefits of using this technique. Next, we will address some significant shortcomings in the current reserves definitions and then present some examples on how some of these shortcomings can be addressed in the evaluation of reserves. Discussion of Probabilistic Analysis of Reserves The probabilistic analysis of reserves relies on the use of probabilistic techniques to estimate the uncertainty of the recoverable hydrocarbon volumes. In its purest sense, these probabilistic methods are used to collect and organize, evaluate, present, and summarize data. These methods provide the tools to analyze large amounts of representative data so that the significance of that data's variability and dependability can be measured and understood. Probabilistic analysis should be considered an important tool for internal analysis, allowing companies to understand and rank their hydrocarbon reserves and resources and the associated risks. This method provides the tools to identify the upside and the downside hydrocarbon potential to better organize the company's portfolio and to allocate capital and manpower resources more efficiently. However, it should be understood that the objectives of a hydrocarbon-property ranking study and an SPE/WPC or SEC reserves reporting evaluation might be different. For example, companies may have their own guidelines to group and analyze hydrocarbon assets to allocate company resources or for property acquisitions. These company guidelines may vary from project to project or from year to year (depending on pricing assumptions) and may be different from those guidelines provided in the SPE/ WPC and SEC definitions. It then becomes the primary challenge of the evaluator to reconcile both evaluations.


2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Minghini ◽  
Nerio Tullini

In 2012, the North of Italy was hit by a seismic sequence characterized by two main events occurred on May 20 and 29 with MW = 6.1 and 6.0, respectively. Those earthquakes were particularly severe toward precast Reinforced Concrete (RC) structures not designed for seismic resistance. In the past years, the authors implemented a database collecting damage data and typological information on the industrial buildings struck by the Emilia earthquakes. That database was used to develop empirical fragility curves, which highlighted the considerable vulnerability of precast buildings conceived in accordance with pre-seismic code provisions. More recently, the interventions of seismic retrofitting on the same buildings, funded by the Emilia-Romagna region and designed by engineers which were directly hired by the companies, were examined in detail and critically revisited. A selection of these interventions is presented in this paper, which analyzes the effectiveness of the various retrofitting solutions, with a specific attention to the force transfer mechanisms between existing structures and strengthening systems. The interventions are divided between column strengthening (based, for example, on RC or steel jacketing) and interventions aimed at providing the building with a suitable earthquake resistant system (based, for example, on either the use of the existing cladding panels or the implementation of new bracing systems). Graphical representations of the analyzed solutions with the relevant construction details are provided.


2010 ◽  

<p>This document provides case studies of structural rehabilita-tion, repair, retrofitting, strengthening, and upgrading of structures, which might be encompassed – in short – by the convenient umbrella terms “Conservation / Upgrading of Existing Structures”. The selected studies presented in this SED cover a variety of structural types from different countries.</p> <p>Strengthening and rehabilitation of structures is usually a challenge because of uncertainties associated with old struc-tures and difficulties due to restrictions on the geometry and materials used, as well as other structural or functional con-straints. When repairing an existing structure the engineers involved have plenty of possibilities, lots of constraints, and in some cases there are no applicable codes. Strengthening and rehabilitating is sometimes a complex and exciting work; an art.</p> <p>The book is a summary of practices to help structural engineers. The reader of this book will discover different approaches to put forward strengthening or rehabilitation projects. Even identical technical problems could have very different efficient solutions, as discussed in the papers, considering structural, environmental, economic factors, as well as contractor and designer experience, materials, etc.</p>


Author(s):  
Corneliu Bob ◽  
Sorin Dan ◽  
Catalin Badea ◽  
Aurelian Gruin ◽  
Liana Iures

<p>Many structures built in Romania before 1970 were designed for gravity loads with inadequate lateral load resistance because earlier codes specified lower levels of seismic loads. Some of these structures are still in service beyond their design life. Also, some deterioration was observed in existing structures due to the actions of different hazard factors. This paper presents the case study of a brewery with reinforced concrete framed structure of five storeys and a tower of nine storeys, which has been assessed and strengthened. The brewery and the tower were built in 1961 and an extension in 1971. An assessment performed in 1999 showed up local damages at slabs, main girders, secondary beams, and columns; concrete carbonation; concrete cover spalled over a large surface; complete corrosion of many stirrups and deep corrosion of main reinforcement; and some broken reinforcement. Such damage was caused by salt solution, CO2, relative humidity RH 80%, and temperatures over 40◦C. Also, inadequate longitudinal reinforcement was deduced≈ from the structural analysis. The initial design, done in 1960, was according to the Romanian codes of that time with provisions at low seismic actions. The structural system weakness is due to present-day high seismic actions. The rehabilitation of the reinforced concrete structure was performed by jacketing with reinforced concrete for the main and secondary beams and columns. In 2003, due to continuous operation and subsequent damage of the structure, a new assessment was required. It was found that some beams and one column were characterized by inadequate main and shear reinforcement as well as corrosion of many stirrups at beams. The strengthening solution adopted was based on carbon fibre reinforced polymer composites for beams and column.</p>


Sign in / Sign up

Export Citation Format

Share Document