scholarly journals Physically Based Soap Bubble Synthesis for VR

2021 ◽  
Vol 11 (7) ◽  
pp. 3090
Author(s):  
Sangwook Yoo ◽  
Cheongho Lee ◽  
Seongah Chin

To experience a real soap bubble show, materials and tools are required, as are skilled performers who produce the show. However, in a virtual space where spatial and temporal constraints do not exist, bubble art can be performed without real materials and tools to give a sense of immersion. For this, the realistic expression of soap bubbles is an interesting topic for virtual reality (VR). However, the current performance of VR soap bubbles is not satisfying the high expectations of users. Therefore, in this study, we propose a physically based approach for reproducing the shape of the bubble by calculating the measured parameters required for bubble modeling and the physical motion of bubbles. In addition, we applied the change in the flow of the surface of the soap bubble measured in practice to the VR rendering. To improve users’ VR experience, we propose that they should experience a bubble show in a VR HMD (Head Mounted Display) environment.

Perception ◽  
2020 ◽  
Vol 49 (9) ◽  
pp. 940-967
Author(s):  
Ilja T. Feldstein ◽  
Felix M. Kölsch ◽  
Robert Konrad

Virtual reality systems are a popular tool in behavioral sciences. The participants’ behavior is, however, a response to cognitively processed stimuli. Consequently, researchers must ensure that virtually perceived stimuli resemble those present in the real world to ensure the ecological validity of collected findings. Our article provides a literature review relating to distance perception in virtual reality. Furthermore, we present a new study that compares verbal distance estimates within real and virtual environments. The virtual space—a replica of a real outdoor area—was displayed using a state-of-the-art head-mounted display. Investigated distances ranged from 8 to 13 m. Overall, the results show no significant difference between egocentric distance estimates in real and virtual environments. However, a more in-depth analysis suggests that the order in which participants were exposed to the two environments may affect the outcome. Furthermore, the study suggests that a rising experience of immersion leads to an alignment of the estimated virtual distances with the real ones. The results also show that the discrepancy between estimates of real and virtual distances increases with the incongruity between virtual and actual eye heights, demonstrating the importance of an accurately set virtual eye height.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0005522020
Author(s):  
Rosalba Hernandez ◽  
Brett Burrows ◽  
Matthew H.E.M. Browning ◽  
Killivalavan Solai ◽  
Drew Fast ◽  
...  

Background: Virtual reality (VR) is an evolving technology that is becoming a common treatment for pain management and psychological phobias. While non-immersive devices (i.e., the Nintendo Wii) have been previously tested with hemodialysis patients, no studies to date have used fully-immersive VR as a tool for intervention delivery. The current pilot trial tests the initial safety, acceptability, and utility of VR during maintenance hemodialysis treatment sessions-particularly, whether VR triggers motion sickness that mimics or negatively impact treatment related symptoms (e.g., nausea). Methods: Hemodialysis patients (n=20) were enrolled in a Phase I single-arm proof-of-concept trial. While undergoing hemodialysis, participants were exposed to our new JovialityTM VR program. This 25-minute program delivers mindfulness training and guided meditation using the Oculus Rift head-mounted display. Participants experienced the program on two separate occasions. Prior and immediately following exposure, participants recorded motion-related symptoms and related discomfort on the Simulator Sickness Questionnaire. Utility measures included end-user's ability to be fully immersed in the virtual space, interact with virtual objects, find hardware user-friendly, and easily navigate the JovialityTM program with the System Usability Score scale. Results: Mean age was 55.3 (+/-13.1) years; 80% male; 60% African American; and mean dialysis vintage was 3.56 (+/-3.75) years. At the first session, there were significant decreases in treatment and/or motion-related symptoms following VR exposure (22.6 vs. 11.2; p=0.03); scores >20 indicate problematic immersion. HD end-users reported high levels of immersion in the VR environment and rated the software easy to operate, with average System Usability Scores of 82.8/100. Conclusions: Hemodialysis patients routinely suffer from fatigue, nausea, lightheadedness, and headaches that often manifest during their dialysis sessions. Our JovialityTM VR program decreased symptom severity without adverse effects. VR programs may be a safe platform to improve the dialysis patient experience.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


2021 ◽  
pp. 104687812110082
Author(s):  
Omamah Almousa ◽  
Ruby Zhang ◽  
Meghan Dimma ◽  
Jieming Yao ◽  
Arden Allen ◽  
...  

Objective. Although simulation-based medical education is fundamental for acquisition and maintenance of knowledge and skills; simulators are often located in urban centers and they are not easily accessible due to cost, time, and geographic constraints. Our objective is to develop a proof-of-concept innovative prototype using virtual reality (VR) technology for clinical tele simulation training to facilitate access and global academic collaborations. Methodology. Our project is a VR-based system using Oculus Quest as a standalone, portable, and wireless head-mounted device, along with a digital platform to deliver immersive clinical simulation sessions. Instructor’s control panel (ICP) application is designed to create VR-clinical scenarios remotely, live-stream sessions, communicate with learners and control VR-clinical training in real-time. Results. The Virtual Clinical Simulation (VCS) system offers realistic clinical training in virtual space that mimics hospital environments. Those VR clinical scenarios are customizable to suit the need, with high-fidelity lifelike characters designed to deliver interactive and immersive learning experience. The real-time connection and live-stream between ICP and VR-training system enables interactive academic learning and facilitates access to tele simulation training. Conclusions. VCS system provides innovative solutions to major challenges associated with conventional simulation training such as access, cost, personnel, and curriculum. VCS facilitates the delivery of academic and interactive clinical training that is similar to real-life settings. Tele-clinical simulation systems like VCS facilitate necessary academic-community partnerships, as well as global education network between resource-rich and low-income countries.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


Author(s):  
Gordon Tao ◽  
Bernie Garrett ◽  
Tarnia Taverner ◽  
Elliott Cordingley ◽  
Crystal Sun

Abstract Background High quality head-mounted display based virtual reality (HMD-VR) has become widely available, spurring greater development of HMD-VR health games. As a behavior change approach, these applications use HMD-VR and game-based formats to support long-term engagement with therapeutic interventions. While the bulk of research to date has primarily focused on the therapeutic efficacy of particular HMD-VR health games, how developers and researchers incorporate best-practices in game design to achieve engaging experiences remains underexplored. This paper presents the findings of a narrative review exploring the trends and future directions of game design for HMD-VR health games. Methods We searched the literature on the intersection between HMD-VR, games, and health in databases including MEDLINE, Embase, CINAHL, PsycINFO, and Compendex. We identified articles describing HMD-VR games designed specifically as health applications from 2015 onwards in English. HMD-VR health games were charted and tabulated according to technology, health context, outcomes, and user engagement in game design. Findings We identified 29 HMD-VR health games from 2015 to 2020, with the majority addressing health contexts related to physical exercise, motor rehabilitation, and pain. These games typically involved obstacle-based challenges and extrinsic reward systems to engage clients in interventions related to physical functioning and pain. Less common were games emphasizing narrative experiences and non-physical exercise interventions. However, discourse regarding game design was diverse and often lacked sufficient detail. Game experience was evaluated using primarily ad-hoc questionnaires. User engagement in the development of HMD-VR health games primarily manifested as user studies. Conclusion HMD-VR health games are promising tools for engaging clients in highly immersive experiences designed to address diverse health contexts. However, more in-depth and structured attention to how HMD-VR health games are designed as game experiences is needed. Future development of HMD-VR health games may also benefit from greater involvement of end-users in participatory approaches.


2021 ◽  
Vol 5 (4) ◽  
pp. 15
Author(s):  
Jingyi Li ◽  
Ceenu George ◽  
Andrea Ngao ◽  
Kai Holländer ◽  
Stefan Mayer ◽  
...  

Ubiquitous technology lets us work in flexible and decentralised ways. Passengers can already use travel time to be productive, and we envision even better performance and experience in vehicles with emerging technologies, such as virtual reality (VR) headsets. However, the confined physical space constrains interactions while the virtual space may be conceptually borderless. We therefore conducted a VR study (N = 33) to examine the influence of physical restraints and virtual working environments on performance, presence, and the feeling of safety. Our findings show that virtual borders make passengers touch the car interior less, while performance and presence are comparable across conditions. Although passengers prefer a secluded and unlimited virtual environment (nature), they are more productive in a shared and limited one (office). We further discuss choices for virtual borders and environments, social experience, and safety responsiveness. Our work highlights opportunities and challenges for future research and design of rear-seat VR interaction.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 397
Author(s):  
Qimeng Zhang ◽  
Ji-Su Ban ◽  
Mingyu Kim ◽  
Hae Won Byun ◽  
Chang-Hun Kim

We propose a low-asymmetry interface to improve the presence of non-head-mounted-display (non-HMD) users in shared virtual reality (VR) experiences with HMD users. The low-asymmetry interface ensures that the HMD and non-HMD users’ perception of the VR environment is almost similar. That is, the point-of-view asymmetry and behavior asymmetry between HMD and non-HMD users are reduced. Our system comprises a portable mobile device as a visual display to provide a changing PoV for the non-HMD user and a walking simulator as an in-place walking detection sensor to enable the same level of realistic and unrestricted physical-walking-based locomotion for all users. Because this allows non-HMD users to experience the same level of visualization and free movement as HMD users, both of them can engage as the main actors in movement scenarios. Our user study revealed that the low-asymmetry interface enables non-HMD users to feel a presence similar to that of the HMD users when performing equivalent locomotion tasks in a virtual environment. Furthermore, our system can enable one HMD user and multiple non-HMD users to participate together in a virtual world; moreover, our experiments show that the non-HMD user satisfaction increases with the number of non-HMD participants owing to increased presence and enjoyment.


2021 ◽  
Vol 1 (1) ◽  
pp. 48-67
Author(s):  
Dylan Yamada-Rice

This article reports on one stage of a project that considered twenty 8–12-years-olds use of Virtual Reality (VR) for entertainment. The entire project considered this in relation to interaction and engagement, health and safety and how VR play fitted into children’s everyday home lives. The specific focus of this article is solely on children’s interaction and engagement with a range of VR content on both a low-end and high-end head mounted display (HMD). The data were analysed using novel multimodal methods that included stop-motion animation and graphic narratives to develop multimodal means for analysis within the context of VR. The data highlighted core design elements in VR content that promoted or inhibited children’s storytelling in virtual worlds. These are visual style, movement and sound which are described in relation to three core points of the user’s journey through the virtual story; (1) entering the virtual environment, (2) being in the virtual story world, and (3) affecting the story through interactive objects. The findings offer research-based design implications for the improvement of virtual content for children, specifically in relation to creating content that promotes creativity and storytelling, thereby extending the benefits that have previously been highlighted in the field of interactive storytelling with other digital media.


Sign in / Sign up

Export Citation Format

Share Document