scholarly journals Pulpal Response to the Combined Use of Mineral Trioxide Aggregate and Iloprost for Direct Pulp Capping

2021 ◽  
Vol 11 (8) ◽  
pp. 3702
Author(s):  
AlAnoud Almeshari ◽  
Rita Khounganian ◽  
Wael Mahdi ◽  
Fahd Aljarbou ◽  
Shilpa Bhandi ◽  
...  

Purpose: The present study aims to assess the combined effects of mineral trioxide aggregate (MTA) and iloprost when used as a pulp capping material on pulpal inflammation and tertiary dentin formation compared with MTA and iloprost alone in rat molar teeth. Methods: Eighty maxillary first molar rat teeth were exposed and capped with iloprost solution, MTA, or MTA mixed with iloprost (MTA-iloprost). The cavities were then filled with resin-modified glass ionomer. The cavity was restored with glass ionomer without the use of pulp capping agent in the control group. The rats were sacrificed after one and four weeks. Block sections of the molar specimens were prepared and subjected to hematoxylin and eosin staining for evaluation. Statistical analysis was done using the Kruskal–Wallis test, followed by Dunnett’s test. Results: At week one, the control group showed significantly more severe pulpal inflammatory reactions than the iloprost (p = 0.00), MTA (p = 0.04), and MTA-iloprost (p = 0.00) groups. Hard tissue formation was commonly found in the iloprost, MTA, and MTA-iloprost groups. After four weeks, pulpal tissue degeneration was observed in the control group. Complete hard tissue barriers were found in 50%, 72.7%, and 77.8% of the specimens in iloprost, MTA, and MTA-iloprost groups, respectively, with no significant differences among the experimental groups. The dentinal tubule patterns were mostly regular in the MTA-iloprost group and irregular in the iloprost and MTA groups. Conclusions: The application of iloprost, MTA, and MTA-iloprost as a pulp capping material resulted in similar pulpal responses in the mechanically exposed pulp of rat molars. Therefore, mixing MTA with iloprost might not be clinically significant.

2021 ◽  
Vol 11 (19) ◽  
pp. 8992
Author(s):  
Ghaliah M. Alsawah ◽  
Manal Alsheddi ◽  
Ebtissam M. Al-Madi ◽  
Mohammad I. Al-Obaida

This study aimed to evaluate the healing of furcation when repaired with Chitosan (CS) scaffold impregnated or not with Simvastatin (SIM) compared with CollaCote (CL) in goat premolar teeth. Root canal treatment was performed in 52 mandibular premolars followed by furcal perforation induction. The perforation was repaired with CL, CS, or CS with SIM after leaving it untreated for 4 weeks. White mineral trioxide aggregate was carried into the furcal site followed by a 2–3 mm resin-modified glass ionomer. The perforation was left untreated, and the access cavity was left open without coronal filling in the control group. The animals were sacrificed after one and three months. Block sections of the premolars were prepared and examined histologically to evaluate the inflammation and type of healing. Hard tissue formation was found in CL, CS, and CS/SIM groups in both periods. At one month, no significant differences were detected among the experimental groups, whereas at three months, CS without SIM showed significantly better performance compared to CL and CS/SIM groups (p = 0.040). Therefore, repairing furcal perforation with CS scaffolds shows desirable biological responses and healing characteristics in favor of bone regeneration at three months.


2019 ◽  
Vol 73 (4) ◽  
pp. 239-248
Author(s):  
Violeta Petrovic ◽  
Jovana Stasic ◽  
Vojislav Komlenic ◽  
Tatjana Savic-Stankovic ◽  
Marina Latkovic ◽  
...  

The objective of this study was to measure temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following a simulated procedure of direct pulp capping. Class I cavities with a microperforation at the pulp horn were prepared in extracted human molar teeth. The complete procedure of direct pulp capping and cavity restoration was performed with the root part of extracted teeth fixed in a water bath at 37 ?C. Mineral trioxide aggregate, bioactive dentin substitute or calcium-hydroxide paste were used as pulp capping materials. Cavities were restored with a light-cured or chemically-cured resin-modified glass ionomer, universal adhesive and a bulk-fill composite, cured with a high-intensity LED unit. Pulp capping materials caused a slight temperature decrease. Lower temperature increase was recorded during light-curing of the glass ionomer liner after direct capping with mineral trioxide aggregate and calcium-hydroxide than that recorded for the bioactive dentin substitute. Adhesive light-curing increased temperature in all groups with higher mean temperatures in groups with chemically-cured as compared to those for the light-cured glass ionomer liner. Direct pulp capping with mineral trioxide aggregate or calcium-hydroxide followed by the light-cured resin-modified glass ionomer liner and a bonded bulk-fill composite restoration induced temperature changes below the potentially adverse threshold of 42.5?C.


2020 ◽  
Vol 11 (2) ◽  
pp. 160-166
Author(s):  
Mohammad Javad Moghaddas ◽  
Horieh Moosavi ◽  
Sara Yaghoubirad ◽  
Nasim Chiniforush

Introduction: The purpose of this study was to compare the effect of the bioactive glass, the glass ionomer, and the Erbium YAG laser as liners on the remineralization of the affected dentin. Methods: The present study was conducted on 64 healthy extracted human molars divided into 4 groups, 1 control group and 3 experimental groups. After artificially inducing dentinal caries lesions, each of the experimental groups was applied to the cavity floor and then restored with a composite. The samples were stored after thermocycling in an incubator for two months. Finally, the hardness of the cavity floor was measured at 3 depths of 20, 50 and 100 μm by the Vickers microhardness tester. The dentin conditions underneath the liners were also evaluated with FESEM. Statistical analysis was performed by two-way ANOVA and the post-hoc Games-Howell test (P<0.05). Results: Among the groups, the lowest microhardness value was in the control group (P<0.05) except at a depth of 100 μm; therefore, there was no significant difference between the control group and the bioactive glass (P>0.05). The laser group had the highest microhardness value, which was significantly different from the control group (P<0.05). There was a significant difference between the laser and bioactive glass (P<0.05), except at a depth of 20 μm. The laser and glass ionomer had only a significant difference at a depth of 100 μm (P<0.05). The microhardness value induced by glass ionomer was higher than bioactive glass, which in no depth was significant (P>0.05). Partial dentinal tubule occlusion was observed with FESEM in each of the experimental groups as compared to the control group. Conclusion: The microhardness values were higher in all groups than in the control group. The laser might be more successful in remineralization than the other ones.


2020 ◽  
Vol 840 ◽  
pp. 324-329
Author(s):  
Sartika Puspita ◽  
Marsetyawan Hne Soesatyo ◽  
Siti Sunarintyas ◽  
Ema Mulyawati

One of the requirements of endodontic material is to have good biocompatibility of pulp tissue that has direct contact with the material, to promote the process of tissue repair. Reversible pulpitis needs direct pulp capping treatment with medicament materials i.e. RMGIC (Resin-Modified Glass Ionomer Cement) and MTA (Mineral Trioxide Aggregate) which are used as the gold standard for direct pulp capping treatment. Both of the materials have several disadvantages including the necrotic tissue in the area has direct contact with the pulp so that it affects the successful treatment results. Nowadays, the new materials are being developed which are expected to improve the existing material deficiencies. In this study, fibroin was extracted from Bombyx mori L. cocoon. This study aimed to examine the biocompatibility of fibroin as a new pulp capping material with RMGIC (Fuji II LC, GC, Japan) and MTA (Rootdent, Technodent, Russia). An experimental study was conducted using extracted human primary dental pulp cells in vitro through orthodontic treatment. A methyl thiazole tetrazolium (MTT) assay was employed to test biocompatibility using ELISA Reader 590 nm wavelengths for 24, 48, and 72 h, respectively. The findings showed that the biocompatibility of fibroin had the highest value of all. In conclusion, fibroin biocompatibility toward MTA and RMGIC as pulp capping materials can be aligned, however, there were no significant differences.


Author(s):  
Lúcio P.G. Chicarelli ◽  
Mariana B.F. Webber ◽  
João P.A. Amorim ◽  
Ana L.C.A. Rangel ◽  
Veridiana Camilotti ◽  
...  

Abstract Objectives Conduct a histological comparison of the pulp response to different materials, with a focus on the continuity and morphology of the mineralized barrier after direct pulp capping. Materials and Methods One hundred and eight maxillary first molars of 54 Wistar rats were subject to direct pulp capping and divided into three groups according to the materials used: calcium hydroxide (CH), mineral trioxide aggregate (MTA), and Biodentine. All cavities were sealed, and the animals were euthanized at 7, 14, and 21 days. Descriptive histological evaluation of the inflammation and formation of the mineralized barrier was performed. Statistical Analysis Statistical analyses were performed using the Kruskal–Wallis test, which was complemented by the Dunn test; differences with p < 0.05 were considered statistically significant. Results The results showed that MTA and Biodentine elicited less intense inflammatory reactions than CH. With respect to the formation and quality of the dentin barrier formed, differences were observed at 21 days between the analyzed groups; the best results being obtained following treatment with MTA and Biodentine. Conclusion MTA and Biodentine induced formation of a more continuous and uniform mineralized barrier with less intense pulp response than CH.


2019 ◽  
Vol 45 (2) ◽  
pp. 108-116
Author(s):  
AKM Bashar ◽  
A.K.M Nurul Kabir ◽  
Rozina Akhter Rizdina ◽  
Ranjit Ghosh ◽  
Ashis Kumar Biswas ◽  
...  

Background: The initial inflammatory reaction of pulp capping materials on the dental pulp has an intimate relation in promoting the future cellular differentiation and biomaterial mineralisation. So, analysis of immediate pulpal tissue reaction in vivo, is also important for evaluation of ultimate efficacy any pulp capping agent. To observe immediate inflammatory response of Human Dental Pulp capped with Mineral Trioxide Aggregate (MTA), Biodentin and Portland Cement (PC). Methods: A total of 70 permanent premolars teeth planned to be extracted for orthodontic alignment of occlusion were used as study sample. The teeth were divided into 3 experimental groups, MTA (n=20), Biodentin (n=20) Portland cement (n=20) and control group (n=10). After having an occlusal exposure of approximately 1.5 mm in diameter; in group A, pulp of teeth was capped with 2-mm-thick layer of ProRoot White MTA (Dentsply) and in group B, with sterile Biodentin (Septodont) according to the manufacturer’s recommendations. Whereas in group C, pulp of teeth was capped with sterile Portland Cement (PC). After placing the experimental material in each group, all teeth restored with glass i‹xiomer cement. After 24 hours the teeth were extracted, fixed in 10% buffered formalin solution, then decalcified by 10% nitric acid and embedded in paraffin. Finally, sectioned into 2 to 3-micron-thick serial sections in the linguo-buccal plane and stained with hematoxylin-eosin. After then the amount of pulp inflammation (type, intensity, and extension) were determined by using a predetermined evaluation criterion under an optical microscope at 40a magnification. Ten intact teeth, which received no exposure and pulp capping but extracted due to orthodontic purpose were also collected and treated as the control group (group D); undergone same histologic preparation and evaluation. Significantstatistical differences among the experimental groups were to be found (p<0.05). Results: Histologically, all the three tested materials produced immediate pulpal tissue reaction. ‘Biodentin’ found to be most immediate pulpal tissue reactive (reactive in 100% cases) and ‘Portland Cement’ showed least immediate tissue reaction (only in 30.0% cases). whereas, MTA produced immediate tissue reaction only in 50.0% cases. Immediate pulpal inflammatory reaction in response to tested material found to be statistically significant different between ‘Biodentin’ and ‘Portland cmient’ (p=0.01), also between ‘Biodentin’ and ‘MTA’ and (p=0.001); but there was no statistically significant difference between ‘MTA’ and ‘Portland cement’ (p =0.197). Conclusion: Considering the maximum immediate pulpal tissue reaction (Inflammation), Biodentin is expected to produce most favorable ultimate bioactivity (biomaterial mineralization) after pulp capping. Bangladesh Med Res Counc Bull 2019; 45: 108-116


2014 ◽  
Vol 38 (4) ◽  
pp. 333-337 ◽  
Author(s):  
M Cannon ◽  
N Gerodias ◽  
A Vieira ◽  
C Percinoto ◽  
R Jurado

Aim: The purpose of this in vivo study was to compare the effectiveness of a new light cured resin based dicalcium/tricalcium silicate pulp capping material (TheraCal LC, Bisco), pure Portland cement, resin based calcium hydroxide or glass ionomer in the healing of bacterially contaminated primate pulps. Study design: The experiment required four primates each having 12 teeth prepared with buccal penetrations into the pulpal tissues with an exposure of approximately 1.0 mm. The exposed pulps of the primate teeth were covered with cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses. After removal of the pellet, hemostasis was obtained and the pulp capping agents applied. The light cured resin based pulp capping material (TheraCal LC) was applied to the pulpal tissue of twelve teeth with a needle tip syringe and light cured for 15 seconds. Pure Portland cement mixed with a 2% Chlorhexidine solution was placed on the exposed pulpal tissues of another twelve teeth. Twelve additional teeth had a base of GIC applied (Triage, Fuji VII GC America) and another twelve had a pulp cap with VLC DYCAL (Dentsply), a light cured calcium hydroxide resin based material. The pulp capping bases were then covered with a RMGI (Fuji II LC GC America). The tissue samples were collected at 4 weeks. The samples were deminerilized, sectioned, stained and histologically graded. Results: There were no statistically significant differences between the groups in regard to pulpal inflammation (H= 0.679, P=1.00). However, both the Portland cement and light cured TheraCal LC groups had significantly more frequent hard tissue bridge formation at 28 days than the GIC and VLC Dycal groups (H= 11.989, P=0.009). The measured thickness of the hard tissue bridges with the pure Portland and light cured TheraCal LC groups were statistically greater than that of the other two groups (H= 15.849, P=0.002). In addition, the occurrence of pulpal necrosis was greater with the GIC group than the others. Four premolars, one each treated according to the protocols were analyzed with a microCT machine. The premolar treated with the light cured TheraCal LC demonstrated a complete hard tissue bridge. The premolar treated with the GIC did not show a complete hard tissue bridge while the premolar treated with VLC Dycal had an incomplete bridge. The pure Portland with Chlorhexidine mixture created extensive hard tissue bridging. Conclusion: TheraCal LC applied to primate pulps created dentin bridges and mild inflammation acceptable for pulp capping.


2020 ◽  
Vol 8 (3) ◽  
pp. 392-401
Author(s):  
Nozomi Matsuo ◽  
Norimasa Tsuji ◽  
Kazuya Tominaga ◽  
Hiroshi Maeda

Enamel matrix derivative (EMD) is a periodontal tissue regeneration material that induced hard tissue formation. This study was performed to examine the reaction of dental pulp tissue directly capped with a synthetic peptide prepared based on EMD research, and to investigate its potential as a pulp capping material. The experiments were performed in the maxillary left and right first molars of five 6-week-old male Sprague–Dawley rats. The exposed pulp was capped with synthetic peptide in the peptide group, but left uncapped in the control group. Two weeks later, the maxillary bone was isolated and photographed by microfocus computed tomography (CT). The opaque area and volume of the coronal pulp cavity were measured on CT images, and the area-to-volume ratio was calculated. After decalcification, tissue samples were prepared, stained with hematoxylin and eosin (H&E), and examined histopathologically. CT images for both groups showed an opaque area in the coronal pulp cavity, and the fraction of images showing opacity was significantly higher in the peptide group (P < 0.01). A large amount of hard tissue was formed in the coronal pulp cavity in the peptide group, around which aggregation of cells with eosinophilic substances in polytopes was observed. Only slight hard tissue formation was observed in the control group. As it showed eosinophilicity on H&E staining, the synthetic peptide was suggested to be involved in hard tissue formation. Synthetic peptides can potentially be used as pulp capping materials.


Sign in / Sign up

Export Citation Format

Share Document