scholarly journals Which Is the Motion State of a Droplet on an Inclined Hydrophilic Rough Surface in Gravity: Pinned or Sliding?

2021 ◽  
Vol 11 (9) ◽  
pp. 3734
Author(s):  
Jian Dong ◽  
Youhai Guo ◽  
Long Jiao ◽  
Chao Si ◽  
Yinbo Bian ◽  
...  

The motion state of a droplet on an inclined, hydrophilic rough surface in gravity, pinned or sliding, is governed by the balance between the driving and the pinned forces. It can be judged by the droplet’s shape on the inclined hydrophilic rough surface and the droplet’s contact angle hysteresis. In this paper, we used the minimum energy theory, the minimum energy dissipation theory, and the nonlinear numerical optimization algorithm to establish Models 1–3 to calculate out the advancing/receding contact angles (θa/θr), the initial front/rear contact angles (θ1−0/θ2−0) and the dynamic front/rear contact angles (θ1−*/θ2−*) for a droplet on a rough surface. Also, we predicted the motion state of the droplet on an inclined hydrophilic rough surface in gravity by comparing θ1−0(θ2−0) and θ1−*(θ2−*) with θa(θr). Experiments were done to verify the predictions. They showed that the predictions were in good agreement with the experimental results. These models are promising as novel design approaches of hydrophilic functional rough surfaces, which are frequently applied to manipulate droplets in microfluidic chips.

1998 ◽  
Vol 518 ◽  
Author(s):  
Sang-Ho Lee ◽  
Myong-Jong Kwon ◽  
Jin-Goo Park ◽  
Yong-Kweon Kim ◽  
Hyung-Jae Shin

AbstractHighly hydrophobic fluorocarbon films were prepared by the vapor phase (VP) deposition method in a vacuum chamber using both liquid (3M's FC40, FC722) and solid sources (perfluorodecanoic acid (CF3(CF2)8COOH), perfluorododecane (C12F26)) on Al, Si and oxide coated wafers. The highest static contact angles of water were measured on films deposited on aluminum substrate. But relatively lower contact angles were obtained on the films on Si and oxide wafers. The advancing and receding contact angle analysis using a captive drop method showed a large contact angle hysteresis (ΔH) on the VP deposited fluorocarbon films. AFM study showed poor film coverage on the surface with large hysteresis. FTIR-ATR analysis positively revealed the stretching band of CF2 groups on the VP deposited substrates. The thermal stability of films was measured at 150°C in air and nitrogen atmospheres as a function of time. The rapid decrease of contact angles was observed on VP deposited FC and PFDA films in air. However, no decrease of contact angle on them was observed in N2.


Author(s):  
Matthew A. Trapuzzano ◽  
Rasim Guldiken ◽  
Andrés Tejada-Martínez ◽  
Nathan B. Crane

Many important processes depend on the wetting of liquids on surfaces. Wetting is commonly controlled through material selection, coatings, and/or surface texture, however these means are sensitive to environmental conditions. Some “hydrophobic” fluoropolymer coatings are sensitive to extended water exposure as evidenced by declining contact angles and increasing contact angle hysteresis. Understanding degradation of these coatings is critical to processes that employ them. To accomplish this, contact angle measurements were taken before, during, and after slides coated with FluoroSyl 3750 or Cytop were submerged in water, or vibrated while covered in water. Both methods demonstrated similar changes in advancing contact angle though vibration increased degradation rates significantly. However, it does not simply accelerate the process as different trends are apparent in receding contact angles. The FluoroSyl 3750 showed no clear degradation under either condition. Surface profilometry did not detect any surface morphology differences that might cause contact angle change.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1528
Author(s):  
Christian W. Karl ◽  
Andrey E. Krauklis ◽  
Andrej Lang ◽  
Ulrich Giese

The wetting of rough polymer surfaces is of great importance for many technical applications. In this paper, we demonstrate the relationship between the mean roughness values and the fractal dimension of rough and self-affine PTFE surfaces. We have used white light interferometry measurements to obtain information about the complex topography of the technical surfaces having different height distributions. Two different methods for the calculation of the fractal dimension were used: The height difference correlation function (HDC) and the cube counting method. It was demonstrated that the mean roughness value (Ra) correlates better with the fractal dimension Df determined by the cube counting method than with the Df values obtained from HDC calculations. However, the HDC values show a stronger dependency by changing the surface roughness. The advancing and receding contact angles as well as the contact angle hysteresis of PTFE samples of different roughness were studied by the modified Wilhelmy balance technique using deionized water as a liquid. The modified Wilhelmy balance technique enables the possibility for future analysis of very rough PTFE surfaces which are difficult to investigate with the sessile drop method.


Author(s):  
Yasufumi Yamamoto ◽  
Tomomasa Uemura

In this paper, we present a front-tracking method containing an accurate representation of solid surface condition, and simulate a drop sliding down an inclined plate employing some slip models. Numerical results are compared with experimental observations by Le Grand et al. (Journal of Fluid Mechanics, 2005), and then which slip model is well-suited is examined. Drop shapes, in particular advancing and receding contact angles, and drop velocity reproduced by our simulations without explicit slip model are qualitatively good agreement with experimental observations for capillary number Ca<0.01.


2007 ◽  
Vol 14 (04) ◽  
pp. 821-825 ◽  
Author(s):  
Q. F. WEI ◽  
Y. LIU ◽  
F. L. HUANG ◽  
S. H. HONG

Polytetrafluoroethylene (PTFE) has been increasingly used in many industries due to its low frictional coefficient and excellent chemical inertness. The surface properties of PTFE are of importance in various applications. The surface properties of PTFE can be modified by different techniques. In this study, PTFE film was treated in oxygen plasma for improving surface wettability. The effects of plasma treatment on dynamic wetting behavior were characterized using Scanning Probe Microscopy (SPM), Fourier transform infrared spectroscopy (FTIR), and dynamic contact angle (DCA) measurements. SPM observations revealed the etching effect of the plasma treatment on the film. The introduction of hydrophilic groups by plasma treatment was detected by FTIR. The roughened and functionalized surface resulted in the change in both advancing and receding contact angles. Advancing and receding contact angles were significantly reduced, but the contact angle hysteresis was obviously increased after plasma treatment.


1983 ◽  
Vol 54 (2) ◽  
pp. 420-426 ◽  
Author(s):  
B. A. Hills

Hydrophilic surfaces in the form of glass slides have been coated with monolayers of three of the major components of pulmonary surfactant, and the wettabilities of the resulting surfaces have been studied by applying a single drop of saline. As fluid was added and removed over successive cycles, there was much hysteresis between the contact angle measured by a goniometer and the location of the triple point. All three surfactants, especially dipalmitoyl lecithin, were found to impart antiwetting properties, with maximum (advancing) contact angles sometimes exceeding 90 degrees and minimum (receding) contact angles seldom less than 28 degrees. In all cases (216 cycles on 36 films) fluid receded to expose the dry subphase. The hysteresis loops agree well with a similar loop calculated from published data for a cat lung in which the pressure-volume cycle has been established for both liquid and air inflation. Contact-angle hysteresis is offered as a possible alternative to surface tension as the surface parameter primarily responsible for the interfacial contribution to compliance hysteresis in the excised lung.


Author(s):  
Qi Ni ◽  
Timo Marschke ◽  
Samuel Steele ◽  
Najafi Seyed ◽  
Nathan B. Crane

A novel method of measuring contact line friction and contact angle hysteresis is described. In this method, a droplet is constrained between two surfaces while the surface of interest initiates motion. The results are compared to conventional characterization methods such as measuring the angle of inclined plane for droplet motion and measuring advancing and receding contact angles by infusing/withdrawing liquid from the substrate. At slow speeds, the proposed method provides a measure of the hysteresis but can also capture information about the contact line friction and viscous affects. Droplet force dependence on droplet size (height/width) is also investigated.


2020 ◽  
Vol 8 (1) ◽  
pp. 47-67
Author(s):  
Andrew Terhemen Tyowua ◽  
Stephen Gbaoron Yiase

The existence of contact angle hysteresis – the difference between the values of the advancing and receding contact angles – is evident in nature (e.g. sticking of rain drops to car windscreens and window panes) and many industrial processes (e.g. surface coating, spraying, and dyeing of fabrics). This phenomenon is often viewed as a nuisance, but it is advantageous in many processes including dip and spin coating, spraying, and painting. With the early theoretical framework of Thomas Young, Robert Wenzel, and A. B. D. Cassie and S. Baxter, describing the wettability of solid surfaces and by extension contact angle, contact angle hysteresis has been deeply investigated. We review here the various ways of measuring contact angle and, consequently, contact angle hysteresis as well as related theoretical models. The successes and limitations of these models are highlighted. We conclude with the advantages and disadvantages of contact angle hysteresis whose presence in many processes is often considered as a nuisance, especially when "coffee stain" forms from the evaporation of a volatile liquid drop containing nonvolatile components.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


Sign in / Sign up

Export Citation Format

Share Document