scholarly journals Beneficial Health Potential of Algerian Polysaccharides Extracted from Plantago ciliata Desf. (Septentrional Sahara) Leaves and Seeds

2021 ◽  
Vol 11 (9) ◽  
pp. 4299
Author(s):  
Noura Addoun ◽  
Zakaria Boual ◽  
Cédric Delattre ◽  
Toufik Chouana ◽  
Christine Gardarin ◽  
...  

Today, an ethnobotanical approach makes sense for identifying new active bioactive chemicals from uses of indigenous plants. Two water-soluble enriched polysaccharide fractions (L-PSPN and S-PSPN) were extracted by hot water extraction from the leaves and seeds of Plantago ciliata Desf. (1798), a Mzab indigenous herb currently used in Algeria by traditional healers. Primary investigation was performed for describing the main structural features of these polysaccharides (pectin- and heteroxylan-like compositions) by using colorimetric assays, FTIR spectroscopy, HPAEC/PAD and GC/MS-EI analyses. Some biological activities were also monitored, such as anticomplement, anti-inflammatory (phagocytic ability, NOX2 and MPO inhibitions) and anti-diabetic (α-amylase and α-glucosidase inhibitions). L-PSPC seems able to moderately modulate innate immune system (IC50 around 100 µg/mL) and contribute to wound-healing processes (IC50 close to 217 vs. 443 µg/mL for sodium heparin). S-PSPC shows some potential as an anti-hyperglycemic (IC50 around 4.7 mg/mL) and anti-inflammatory (IC50 ranging from 111 to 203 µg/mL) agent, as well as other (fiber) psyllium-like polysaccharides extracted from Plantago species.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 503
Author(s):  
Györgyi Horváth ◽  
Eszter Csikós ◽  
Eichertné Violetta Andres ◽  
Tímea Bencsik ◽  
Anikó Takátsy ◽  
...  

Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.


Author(s):  
Adeoye Joshua Oyewusi ◽  
Olayinka Ayotunde Oridupa ◽  
Adebowale Bernard Saba ◽  
Ibironke Kofoworola Oyewusi ◽  
Jonny Olufemi Olukunle

Abstract Objectives Several cultivars of Allium cepa L. have been studied for anti-inflammatory and analgesic activities but there is inadequate information on such biological activities of the concentrated extracts of the Nigerian grown red cultivar A. cepa bulb. Methods The anti-inflammatory models used in this study were Carrageenan-induced paw oedema and formalin-induced paw lick in rats, while acetic acid-induced abdominal writhing, hot plate reaction, hot water tail flick tests in mice were the analgesic models. Results At 30 min post-induction (pi), the inhibition of paw oedema (62.50%) by 200 mg/kg of methanol extract of red cultivar A. cepa bulb (MERCACB) was significantly (p<0.001) higher than that of indomethacin (15.63%) at 10 mg/kg. The paw oedema inhibition at 60 min pi by MERCACB (76.92%) was significantly higher than that of indomethacin (41.03%). At the early phase of formalin paw-lick test, the pain reaction time (PRT) of rat treated with MERCACB (400 mg/kg) was significantly lower than that of indomethacin and the control groups. The hotplate test revealed that PRT of mice treated with 800 mg/kg of MERCACB were significantly (p<0.01) longer in comparism to indomethacin and control groups. The PRT of mice subjected to thermal pain due to hot water and treated with 800 mg/kg of MERCACB was significantly (p<0.05) longer than that of the control group. Conclusions These findings indicate that MERCACB possesses potent anti-inflammatory and analgesic properties which confirm the traditional use of the plant for the treatment of inflammatory diseases and may be useful as a future therapeutic agent.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2330 ◽  
Author(s):  
Jenni Tienaho ◽  
Maarit Karonen ◽  
Riina Muilu–Mäkelä ◽  
Kristiina Wähälä ◽  
Eduardo Leon Denegri ◽  
...  

Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance.


2020 ◽  
Vol 842 ◽  
pp. 326-336
Author(s):  
Fei Long Sun ◽  
Shuai Wu ◽  
Quan Jiang ◽  
Huo Cheng Chen ◽  
Hong Yan Guan

In this study, the effects of the specimen preparation method, temperature, and duration of the extraction step for the determination of the water-soluble chloride content of sea sand were investigated. The results demonstrated that increasing the heating temperature and duration promoted the dissolution of chloride, where the maximum value was obtained at 80°C and 60 min. Hot water extraction (80°C/60 min) could eliminate the effects of different specimen preparation methods on the final test results. Therefore, a new method was developed with drying at a temperature of 110 ± 5°C and hot water extraction at a temperature of 80°C for 60 min. The suitability of the new method for determining the water-soluble chloride content of sea sand was verified by testing the extracted specimens again. The results indicated that the chloride in sea sand dissolved fully with the new method, and thus it is suitable for testing the water-soluble chloride content of sea sand. Finally, the organic and inorganic compositions of the film adsorbed on the surface of sea sand were studied based on thermogravimetric analysis, inductively coupled plasma atomic emission spectrometry, ion chromatography, and total organic carbon measurements. The results indicated that a layer of substance (a multi-substance film) was adsorbed onto the surface of sea sand. This layer comprised inorganic salts (such as Cl–, Na+, Mg2+, SO42–, and Ca2+) and organic compounds, which were related to the composition of sea water. The multi-substance film greatly affected the dissolution and diffusion of chloride in the sea sand. Hot water extraction accelerated the dissolution of the film and increased the test results in terms of the water-soluble chloride contents.


2016 ◽  
Vol 7 (6) ◽  
pp. 2886-2897 ◽  
Author(s):  
Chun Chen ◽  
Bin Zhang ◽  
Xiong Fu ◽  
Rui Hai Liu

A novel polysaccharide (MFP3P) was isolated from Murus alba L. through the hot water extraction method followed by chromatographic purification.


2011 ◽  
Vol 145 ◽  
pp. 154-158
Author(s):  
Pei Sheng Yan ◽  
Li Ya Ma ◽  
Li Xin Cao

Polysaccharides extracted from fruiting body and mycelia of higher fungi have been found to show various biological activities. Traditionally, these polysaccharides are manufactured by the hot water extraction method. Low polysaccharide yield is the disadvantage of this method. This paper reports the optimal conditions to manufacture polysaccharide with high-yield from Hypsizigus marmoreus mycelia using enzymatic hydrolytic extraction method. Neutral protease was selected as the most cost efficient among six enzymes. The uniform design was further conducted to optimize the enzymatic hydrolytic extraction conditions, and a regression model was constructed to predict polysaccharide yield. The optimized procedures was that 2% (w/w) of neutral protease was added into hydrolytic solution and incubated for 4 h at 43°C, then extracted one time at 100°C for 1 h. Under optimized procedures, the measured polysaccharide yield was 15.73±0.15 (mg/g), which was very close to the predicted value of 16.65 (mg/g). The results validated the accuracy of the regression model and the optimized procedure. When following the optimized procedures, polysaccharide yield was raised 75.0% over that before optimization, and increased by 122.5% and 104.8% over hot-water extraction and microwave assisted extraction methods respectively. This was the first study to apply uniform design for optimizing high yield manufacture of mycelia polysaccharides by enzymatic hydrolytic extraction. We concluded that enzymatic hydrolytic extraction was a simple, high yield method to manufacture polysaccharides from mushroom mycelia and might be used widely in polysaccharide-derived functional foods production.


2002 ◽  
Vol 70 (9) ◽  
pp. 4908-4916 ◽  
Author(s):  
Barbara A. Fernie-King ◽  
David J. Seilly ◽  
Alexandra Davies ◽  
Peter J. Lachmann

ABSTRACT Streptococcal inhibitor of complement (SIC) is a 31-kDa extracellular protein of a few, very virulent, strains of Streptococcus pyogenes (particularly M1 strains). It is secreted in large quantities (about 5 mg/liter) and inhibits complement lysis by blocking the membrane insertion site on C5b67. We describe investigations into the interaction of SIC with three further major components of the innate immune system found in airway surface liquid, namely, secretory leukocyte proteinase inhibitor (SLPI), lysozyme, and lactoferrin. Enzyme-linked immunosorbent assays showed that SIC binds to SLPI and to both human and hen egg lysozyme (HEL) but not to lactoferrin. Studies using 125I-labeled proteins showed that SIC binds approximately two molecules of SLPI and four molecules of lysozyme. SLPI binding shows little temperature dependence and a small positive enthalpy, suggesting that the binding is largely hydrophobic. By contrast, lysozyme binding shows strong temperature dependence and a substantial negative enthalpy, suggesting that the binding is largely ionic. Lysozyme is precipitated from solution by SIC. Further studies examined the ability of SIC to block the biological activities of SLPI and lysozyme. An M1 strain of group A streptococci was killed by SLPI, and the antibacterial activity of this protein was inhibited by SIC. SIC did not inhibit the antiproteinase activity of SLPI, implying that there is specific inhibition of the antibacterial domain. The antibacterial and enzymatic activities of lysozyme were also inhibited by SIC. SIC is the first biological inhibitor of the antibacterial action of SLPI to be described and may prove to be an important tool for investigating this activity in vivo. Inhibition of the antibacterial actions of SLPI and lysozyme would be advantageous to S. pyogenes in establishing colonization on mucosal surfaces, and we propose that this is the principal function of SIC.


2020 ◽  
Vol 07 (02) ◽  
pp. e58-e67
Author(s):  
Mahamane Haïdara ◽  
Adama Dénou ◽  
Mohamed Haddad ◽  
Aïssata Camara ◽  
Korotoumou Traoré ◽  
...  

AbstractIn Mali, improved traditional medicines [“Médicaments Traditionnels Améliorés”] are prepared from traditionally used medicinal plants. Recently, the Department of Traditional Medicine has identified Terminalia macroptera Guill. & Perr. (Combretaceae) as a potential candidate for an improved traditional medicine. T. macroptera is a West African medicinal plant used in Mali against various health disorders, with more than 30 different indications mentioned by traditional healers, including hepatitis, gonorrhea, fever, pain relief, and various infectious diseases (Helicobacter pylori-associated diseases). To date, validation of most of the biological activities of has been mainly carried out in vitro, except for antimalarial activities. In this study, the potential anti-inflammatory, antipyretic, analgesic, and hepatoprotective properties of T. macroptera were investigated in different murine models. Administration of T. macroptera ethanolic root and leaf extracts in rats significantly reduced pyrexia, pain, inflammation, and hepatic marker enzymes such as alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase in the different murine models used (p<0.05). A phytochemical screening of T. macroptera revealed the presence of tannins, flavonoids, saponins, anthracene derivatives, sterols, triterpenes, and sugars in both leaf and root extracts as the main phytochemical compounds. This was confirmed by qualitative analysis, liquid chromatography coupled with high-resolution mass spectrometry. T. macroptera extracts demonstrated interesting in vivo antipyretic, analgesic, anti-inflammatory, and hepatoprotective activities. Therefore, T. macroptera should be proposed and further evaluated as a potential improved traditional medicine for the treatment of liver-related disorders and for the relief of pain and fever.


2014 ◽  
Vol 5 (3) ◽  
pp. 517-520 ◽  
Author(s):  
Roderick Williams ◽  
Gerald Münch ◽  
Erika Gyengesi ◽  
Louise Bennett

Bacopa monnieri(L., BM) is a traditional Ayurvedic medicinal herb recognised for its efficacy in relieving acute pain and inflammation, as related to selective inhibition of cyclo-oxygenase-2 (COX-2) enzyme and consequent reduction in COX-2-mediated prostanoid mediators. Anti-inflammatory activity of BM might also account for its benefits in cognition.


Sign in / Sign up

Export Citation Format

Share Document