scholarly journals Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil

2021 ◽  
Vol 11 (12) ◽  
pp. 5495
Author(s):  
Federica Turrini ◽  
Margherita Beruto ◽  
Luciano Mela ◽  
Paolo Curir ◽  
Giorgia Triglia ◽  
...  

FINNOVER is an EU Interreg-Alcotra project that aims to bring new perspectives to floriculture enterprises by recovering useful bioproducts from the waste produced during processing of several aromatic species. In this study, a new operation strategy to recover lavender (Lavandula angustifolia Mill.) solid by-products remaining after the extraction of the essential oil was developed. Pulsed ultrasound-assisted extraction was employed as a sustainable and eco-compatible technology to extract, in a very short time (10 min), this agricultural waste using a food-grade solvent (a mixture of ethanol/water). All the extracts obtained from both flower and leaf waste and flower-only residues, exhibit a promising total phenolic content (38–40 mg gallic acid/g of dry waste), radical scavenging activity (107–110 mg Trolox/g of dry waste) and total flavonoid content (0.11–0.13 mg quercetin/g of dry waste). Moreover, the chromatographic analysis of these extracts has shown that this overlooked agriculture waste can represent a valuable source of multifunctional compounds. Particularly, they exhibit a content of polyphenols and flavonoids up to 200 times higher than the corresponding leachate, and they are a valuable source of gentisic acid (1.4–13 mg/g dry waste) representing a new low-cost ingredient usable in different fields (i.e., cosmetic).

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1665
Author(s):  
Shusheng Wang ◽  
Amy Hui-Mei Lin ◽  
Qingyou Han ◽  
Qin Xu

Potato peels (PPs) are generally considered as agriculture waste. The United States alone generates over one million tons of PPs a year. However, PPs contain valuable phenolic compounds with antioxidant activities. In this study, we evaluated the efficiency of ultrasound-assisted extraction techniques in recovering antioxidants from PPs. These techniques included a direct ultrasound-assisted extraction (DUAE), an indirect ultrasound-assisted extraction (IUAE), and a conventional shaking extraction (CSE). Results of this study showed that DUAE was more effective in extracting phenolic compounds than IUAE and CSE. We also evaluated the factors affecting the yield of total phenolic compounds (TPC) in DUAE, including the temperature, time, acoustic power, ratio of solvent to solids, and size of PPs particles. TPC yield of DUAE was higher, and the extraction rate was faster than IUAE and CSE. Furthermore, TPC yield was strongly correlated to the temperature of the mixture of PPs suspension. SEM images revealed that the irradiation of ultrasound energy from DUAE caused micro-fractures and the opening of PPs cells. The extract obtained from DUAE was found to have antioxidant activity comparable to commercial synthetic antioxidants. Results of this preliminary study suggest that DUAE has the potential to transform PPs from agricultural waste to a valuable ingredient. A future systematic research study is proposed to advance the knowledge of the impact of processing parameters in the kinetics of phenolic compounds extraction from potato peels using various extraction methods.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


2021 ◽  
Vol 43 ◽  
pp. e55564
Author(s):  
Suelen Siqueira dos Santos ◽  
Carolina Moser Paraíso ◽  
Letícia Misturini Rodrigues ◽  
Grasiele Scaramal Madrona

Blueberry and raspberry pomace are a rich source of bioactive compounds that have not been commercially utilized yet, and ultrasound-assisted technology can efficiently extract these compounds. Also, the use of water as a solvent added to the ultrasound-assisted technology improves this eco-friendly process. Therefore, an aqueous eco-friendly extraction, including extraction time and ultrasound presence or absence (conventional extraction) was performed in order to extract bioactive compounds from blueberry and raspberry pomace. Response parameters included levels of anthocyanins, phenolic compounds, and flavonoids, and antioxidant activity determined by DPPH, ABTS, and FRAP methods. Analysis of variance results indicated that ultrasound-assisted extraction for 45 min. was feasible to extract the bioactive compounds. The antioxidant content of the extract obtained by the ultrasound-assisted process was 1.4 times higher on average and the total phenolic concentration was 1.6 times higher (for blueberry 5.02 and for raspberry 2.53 mg gallic acid equivalent/g) compared with those obtained by the conventional process. Thus, the ultrasound-assisted extraction method can be a profitable alternative to extract bioactive compounds from blueberry and raspberry pomace, as it is energy efficient, requires fewer chemicals, and produces less effluent. This eco-friendly technology is therefore viable for food, nutraceutical, and cosmetic industries, and also for reducing food waste.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 326 ◽  
Author(s):  
María José Aliaño-González ◽  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices.


2015 ◽  
Vol 29 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Jana Šic Žlabur ◽  
Sandra Voća ◽  
Nadica Dobričević ◽  
Mladen Brnčić ◽  
Filip Dujmić ◽  
...  

Abstract The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1139 ◽  
Author(s):  
Gabriela Aguilar-Hernández ◽  
María de los Ángeles Vivar-Vera ◽  
María de Lourdes García-Magaña ◽  
Napoleón González-Silva ◽  
Alejandro Pérez-Larios ◽  
...  

The soursop fruit or Annona muricata (A. muricata) fruit is recognized by its bioactive compounds and acetogenins (ACG) are among the most important. The effect of ACGs, with greater importance in health, is that they present anti-tumor activity; however, the methods of extraction of ACGs are very slow and with a high expenditure of solvents. To our knowledge, there is no report of an optimal method for the extraction of acetogenins from the Annonaceae family by ultrasound-assisted extraction (UAE); therefore, the aim was to find the best UEA conditions of acetogenins from A. muricata fruit (peel, pulp, seed, and columella) by using response surface methodology. The effect of amplitude (40%, 70%, and 100%), time (5, 10, and 15 min), and pulse-cycle (0.4, 0.7, and 1 s) of ultrasound at 24 kHz was evaluated on the total acetogenin content (TAC). Optimal extraction conditions of acetogenins (ACGs) with UEA were compared with the extraction of ACGs by maceration. The optimal UEA conditions in the A. muricata pulp and by-products were dependent on each raw material. The highest TAC was found in the seed (13.01 mg/g dry weight (DW)), followed by the peel (1.69 mg/g DW), the pulp (1.67 mg/g DW), and columella (1.52 mg/g DW). The experimental TAC correlated well with the model (Adjusted R2 with values between 0.88 and 0.97). The highest effectiveness in ACG extraction was obtained in seeds and peels using UEA compared to extraction by maceration (993% and 650%, respectively). The results showed that A. muricata by-products are an important source of ACGs and that UAE could be a viable alternative, with high potential for large-scale extraction.


Sign in / Sign up

Export Citation Format

Share Document