scholarly journals Design of an Integrated Heat Dissipation Mechanism for a Quad Transmit Receive Module of Array Radar

2021 ◽  
Vol 11 (15) ◽  
pp. 7054
Author(s):  
Jian-Yi Liang ◽  
Yung-Lung Lee ◽  
Shih-Wei Mao ◽  
Ming-Da Tsai

A radar system requires a number of high-power components operating in a narrow and convection-free environment. This study aims to develop an integrated heat dissipation system that is suitable for the high-power electronic equipment of radar systems. The proposed heat dissipation mechanism integrates a fluid circulation-type cold plate with a quad transmit receive module. The finite element method in the COMSOL fluid–solid coupling heat transfer analysis software was used to analyze the heat dissipation performance of the cold plate in the proposed mechanism. The Taguchi method was adopted to optimize the cold plate design. The simulation and experimental results show that the proposed mechanism can control the temperature equalization and temperature of the system within the specified requirements. The practicality of the proposed mechanism was verified. The findings can serve as a reference for the design of high-power electronic equipment in a heat dissipation system.

2020 ◽  
Vol 8 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Jianming Yang ◽  
Xia Liao ◽  
Gui Wang ◽  
Jia Chen ◽  
Wanyu Tang ◽  
...  

Lightweight and efficient electromagnetic interference (EMI) shielding composites are of great significance for the development of next generation communication technology, wearable equipment and high-power electronic equipment.


Optik ◽  
2010 ◽  
Vol 121 (13) ◽  
pp. 1243-1250 ◽  
Author(s):  
Jianfeng Li ◽  
Kailiang Duan ◽  
Zhiyong Dai ◽  
Zhonghua Ou ◽  
Yong Liu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6287
Author(s):  
David Lumbreras ◽  
Manel Vilella ◽  
Jordi Zaragoza ◽  
Néstor Berbel ◽  
Josep Jordà ◽  
...  

The design of a cooling system is critical in power converters based on wide-bandgap (WBG) semiconductors. The use of gallium nitride enhancement-mode high-electron-mobility transistors (GaN e-HEMTs) is particularly challenging due to their small size and high power capability. In this paper, we model, study and compare the different heat dissipation systems proposed for high power density GaN-based power converters. Two dissipation systems are analysed in detail: bottom-side dissipation using thermal vias and top-side dissipation using different thermal interface materials. The effectiveness of both dissipation techniques is analysed using MATLAB/Simulink and PLECS. Furthermore, the impact of the dissipation system on the parasitic elements of the converter is studied using advanced design systems (ADS). The experimental results of the GaN-based converters show the effectiveness of the analysed heat dissipation systems and how top-side cooled converters have the lowest parasitic inductance among the studied power converters.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012033
Author(s):  
Xunan He ◽  
YuanLi Kang ◽  
Peng Li

Abstract The thesis has carried out design and simulated analysis of low flux cold plate for high-power power electronics equipment. First, according to heat distribution and design requirements, two kinds of flow passage for low flux cold plate is designed. Then performance characteristics simulation of different flow passage for cold plate is performed. And the heat dissipation characteristics of two kinds of flow passage can both meet the design requirements. Finally, from the perspective of high temperature, temperature difference, pressure drop and so on, the simulated results are comparative analysis. And it is helpful to the design and optimizing of cold plate for high-power power electronics equipment.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1342
Author(s):  
Li Shen ◽  
Fan Xie ◽  
Wenxun Xiao ◽  
Huayu Ji ◽  
Bo Zhang

In order to quickly calculate the stable temperature of a reactor driven by high-frequency and high-power pulse voltage, an improved thermal network model suitable for a reactor under this condition is established in this paper. In power electronic equipment, the maximum temperature of the reactor is usually concentrated in its internal core. Moreover, with the increasing demand of high-power density in power electronic devices, the structure design of the reactor is more compact, and the internal magnetic field will affect the accuracy of the temperature-measuring device. Therefore, it is difficult to measure the internal temperature rise of the reactor directly. However, its stable operating temperature could be analyzed by the thermal network modeling methods and heat transfer analysis tool. Therefore, a convenient and accurate thermal network model of the reactor under high-frequency and high-power square wave voltage is established by considering the equivalent thermal resistance of the winding, the three-dimensional geometrical effect of the core and the effect of the high-frequency repeated pulse stress on the thermal penetration depth. Additionally, the internal temperature of the reactor can be obtained through the external temperature in terms of the presented model. To verify the feasibility of the thermal network model, the corresponding multiphysical field finite element simulation and the reactor temperature measurement platform is built. The simulation and experimental results show that the proposed thermal network model has a high precision and fast calculation speed, and it is an effective tool for thermal analysis of the reactor.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


Sign in / Sign up

Export Citation Format

Share Document