scholarly journals Advances in Valveless Piezoelectric Pumps

2021 ◽  
Vol 11 (15) ◽  
pp. 7061
Author(s):  
Qiufeng Yan ◽  
Yongkang Yin ◽  
Wanting Sun ◽  
Jun Fu

Piezoelectric pump design is regarded as a hot research topic in the microfluidic field, and has been applied in liquid cooling, precision machinery and other relevant domains. The valveless piezoelectric pump becomes an important branch of the piezoelectric pump, because it successfully avoids the problem of “pump-lagging of valve” during the valve piezoelectric pump processing. This paper summarizes the development of valveless piezoelectric pumps, and introduces some different configurations of valveless piezoelectric pumps. The structure and material of all kinds of valveless piezoelectric pumps are elaborated in detail, and also the output performance of the pump is evaluated and analyzed with the variations in flow rate and output pressure as reference. By comparing the flow of different types of valveless piezoelectric pumps, the application of valveless piezoelectric pumps is also illustrated. The development tendency of the valveless piezoelectric pump is prospected from the perspective of structure design and machining methods, which is expected to provide novel ideas and guidance for future research.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1712
Author(s):  
Yongming Yao ◽  
Zhicong Zhou ◽  
Huiying Liu ◽  
Tianyu Li ◽  
Xiaobin Gao

In order to reduce backflow and improve output performance, a valveless piezoelectric pump with a reverse diversion channel was produced. The channel was designed based on the structure of the Tesla valve, which has no moving parts and can produce a high-pressure drop during reverse flow. Therefore, this special flowing channel can reduce the backflow of a valveless piezoelectric pump, which has the characteristic of one-way conduction. This work first revealed the relationship between the main structural parameters of the Tesla valve and the kinetic energy difference of liquid. Then, by using simulation software, the structure was verified to have the characteristics of effective suppression of the backflow of valveless piezoelectric pumps. Through setting multiple simulations, some important parameters that include the optimal height between the straight channels (H), the optimal angle (α) between the straight channel and the inclined channel, as well as the optimal radius (R) of the channel were confirmed. Finally, a series of prototypes were fabricated to test the output performance of this valveless piezoelectric pump. Comparing the experimental results, the optimal parameters of the Tesla valve were determined. The results suggest that when the parameters of the Tesla valve were H = 8 mm, α = 30°, and R = 3.4 mm, the output performance of this piezoelectric pump became best, which had a maximum flow rate of 79.26 mL/min with a piezoelectric actuator diameter of 35 mm, an applied voltage of 350 Vp-p, and a frequency of 28 Hz. The effect of this structure in reducing the return flow can be applied to fields such as agricultural irrigation.


Author(s):  
Ping Zeng ◽  
Li’an Li ◽  
Jingshi Dong ◽  
Guangming Cheng ◽  
Junwu Kan ◽  
...  

A novel piezoelectric pump called single-bimorph double-acting check-valve piezoelectric pump was proposed in this paper in order to improve the output performance of the single-bimorph single-chamber piezoelectric membrane pump. The constituent parts of the newly designed piezoelectric pump have no difference with the single-bimorph single-chamber check-valve piezoelectric membrane pump except the structural difference of the pump body. There are two serial-connection pump chambers which are formed by the two sides of the piezoelectric bimorph and the pump body of the newly designed piezoelectric pump. The new piezoelectric pump was fabricated, and output performance was experimentally investigated. The maximum flow rate against zero back pressure of the new pump was 318 ml/min and the pumping pressure reached 40.5 kPa at the operating voltage of 90 V. The output power was roughly twice that of the single-bimorph single-chamber check-valve piezoelectric membrane pump. The testing results proved that the new piezoelectric pump could enhance the output performance and the energy conversion efficiency of the piezoelectric bimorph comparing with the single-bimorph single-chamber check-valve piezoelectric membrane pump.


2020 ◽  
Author(s):  
Jun Huang ◽  
Kai Li ◽  
Jianhui Zhang ◽  
Jiaming Liu ◽  
Quan Zhang ◽  
...  

Abstract A piezoelectric pump with flexible valve has been developed to pump high viscosity liquid in various biomedical environments. The structure of the flexible valve is designed according to the characteristics of the human aortic shape which aims to simulate the bionic pumping function of the human heart. Dynamic stress-strain features of the flexible valve is analysed by the finite element method , and the results show that the proposed flexible valve is suitable and functional for the piezoelectric pump design. Then the cylinder and diffuser/nozzle piezoelectric pumps based on flexible valves have been developed and fabricated. The output performance experiments indicate that the maximum flow rate of the cylinder piezoelectric pump with flexible valve is 15.38 mL/min, which is 170.77% higher than the diffuser/nozzle piezoelectric pump with flexible valve. The outstanding ability of the cylinder piezoelectric pump with flexible valve for transmitting high viscosity liquid has been validated. Such advantages of the proposed piezoelectric pump with flexible valve made it featuring the potential application ability in living cells delivery, biomedical analysis system and fine chemical industry.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kan Bian ◽  
Zhi Huang ◽  
Jietao Dai ◽  
Fan Zhang ◽  
Xiaosheng Chen ◽  
...  

Studies have shown that the valveless piezoelectric pump with streamline flow tubes (VPPSFTs) can increase the flow rate while reducing the vortex, which has a broad application prospect and conforms to the huge potential demand in the fields of medical treatment, sanitation, and health care. The flow runner of the VPPSFT was designed as two segments with a smooth transition between the hyperbola segment and the arc segment. However, the effect of the radius of the arc segment on pump performance is not clear. Therefore, three groups of VPPSFT with arc segments of different curvature radii were designed in this study, and the influence of curvature radius of arc segment on the pump performance was explored. On the basis of the theoretical analysis of fluid continuity and conservation of energy, the structure of VPPSFT was designed, the experimental test was carried out, and the finite element simulation software was used for numerical analysis. The results show that the output performance increases with the increase in the radius of the arc segment, and the maximum flow rate was 116.78 mL/min. The amplitude and the flow rate are almost the same trend as the frequency. This study improves the performance of the valveless piezoelectric pump and provides reference for the structure design of VPPSFT.


2020 ◽  
Vol 306 ◽  
pp. 04003
Author(s):  
Lei Zou ◽  
Kai Li ◽  
Jun Huang

The valveless piezoelectric pump delivers fluid based on the difference of flow resistance of internal tube. In this paper, a vortex diode with conical tangential tube is proposed, which possesses the great characteristic of reverse cut-off, and the analysis of the forward and reverse flow resistance of the conical vortex diode is verified by finite element analysis. Then, a valveless piezoelectric pump with conical vortex diodes as the internal channel is designed, and the prototype is manufactured. The results of the output performance experiment show that the maximum output flow rate of the valveless piezoelectric pump is 10.44 g/min at the drive frequency of 45Hz, and the maximum output pressure is 560 Pa at the drive frequency of 35Hz. The proposal of the valveless piezoelectric pump provides a good reference for more new types of valveless piezoelectric pumps.


2021 ◽  
Vol 92 (7) ◽  
pp. 075005
Author(s):  
Lipeng He ◽  
Dianbin Hu ◽  
Jingran Wang ◽  
Zheng Zhang ◽  
Ziming Zhou ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


Author(s):  
Lipeng He ◽  
Xiaoqiang Wu ◽  
Zheng Zhang ◽  
Zhe Wang ◽  
Bangcheng Zhang ◽  
...  

Piezoelectric pumps are applied in many fields, such as chemical analysis system and fluid pumping systems. Piezoelectric pumps with high output pressure can meet the needs of more fields. This article introduces the design and fabrication of a high output pressure piezoelectric pump with straight arm wheeled check valve. In this paper, the influence of straight arm wheeled check valve on the output pressure of piezoelectric pump is deeply discussed from the aspect of energy loss. This study investigated the effect of valve arm number ( N = 2, 3,4, and 5), the valve arm width ( W = 0.8, 1.0, and 1.2 mm), and the valve arm length ( L = 1.92, 2.02, and 2.12 mm) on the output pressure of piezoelectric pump. The output pressure characteristic of straight arm wheeled check valve piezoelectric pump with different valve parameters is obtained by experiment. Experimental results show that when N = 4, W = 1.0 mm, L = 2.02 mm, the output pressure of the straight arm wheeled check valve piezoelectric pump has the best output pressure of 27.41 kPa at 220 V and 85 Hz. This study provides a reference for the further application of piezoelectric pumps in fluid pumping field.


2021 ◽  
Vol 55 (1) ◽  
pp. 1-9
Author(s):  
Ingo Frommholz ◽  
Guillaume Cabanac ◽  
Philipp Mayr ◽  
Suzan Verberne

The 11th Bibliometric-enhanced Information Retrieval Workshop (BIR 2021) was held online on April 1st, 2021, at ECIR 2021 as a virtual event. The interdisciplinary BIR workshop series aims to bring together researchers from different communities, especially Scientometrics/Bibliometrics and Information Retrieval. We report on the 11th BIR, its invited talks and accepted papers. Lessons learned from BIR 2021 are discussed and potential future research questions identified that position Bibliometric-enhanced IR as an exciting special yet important branch of IR research.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


Sign in / Sign up

Export Citation Format

Share Document