scholarly journals A Screw-Axis Approach to the Stability of Two-Wheeled Vehicles

2021 ◽  
Vol 11 (16) ◽  
pp. 7393
Author(s):  
Matteo Bova ◽  
Matteo Massaro

The stability of two-wheeled vehicles is predominantly characterized by the well-known weave and wobble vibration modes, which have been extensively investigated in the literature, mainly in terms of their frequencies and damping ratios. In this work the focus is towards their mode shapes, which are investigated using the screw-axis (also called Mozzi-axis), instead of the classic compass diagrams, for a better understanding of their three-dimensional patterns. The analysis is then carried out using the velocity centres for a characterization from the top, rear and side view of the vehicle. The multibody vehicle model employed for the numerical analysis is built in Adams. The dataset resembles that of a 250cc sport motorcycle, and has been derived from laboratory tests. The stability analysis is carried out in the frequency domain. It is found that, depending on the selected plane for the projection of the three-dimensional vibration motion, the trajectories of the velocity centres of the weave and wobble can cross either aft or fore the centre of mass, which has been associated to the under- and over-steering behaviour in the literature.

Author(s):  
Kevin I. Tzou ◽  
Jonathan A. Wickert ◽  
Adnan Akay

Abstract The three-dimensional vibration of an arbitrarily thick annular disk is investigated for two classes of boundary conditions: all surfaces traction-free, and all free except for the clamped inner radius. These two models represent limiting cases of such common engineering components as automotive and aircraft disk brakes, for which existing models focus on out-of-plane bending vibration. For a disk of significant thickness, vibration modes in which motion occurs within the disk’s equilibrium plane can play a substantial role in setting its dynamic response. Laboratory experiments demonstrate that in-plane modes exist at frequencies comparable to those of out-of-plane bending even for thickness-to-diameter ratios as small as 10−1. The equations for three-dimensional motion are discretized through the Ritz technique, yielding natural frequencies and mode shapes for coupled axial, radial, and circumferential deformations. This treatment is applicable to “disks” of arbitrary dimension, and encompasses classical models for plates, bars, cylinders, rings, and shells. The solutions so obtained converge in the limiting cases to the values expected from the classical theories, and to ones that account for shear deformation and rotary inertia. The three-dimensional model demonstrates that for geometries within the technologically-important range, the natural frequencies of certain in- and out-of-plane modes can be close to one another, or even identically repeated.


2011 ◽  
Vol 422 ◽  
pp. 379-382
Author(s):  
Wei Chuang Quan ◽  
Mei Fa Huang ◽  
Zhi Yue Wang ◽  
Da Wei Zhang

Led die bonder used for bond lead frame and chip is one of the key equipment of led production line. The swing-arm is an important component of led die bonder and its dynamic characteristics will directly affect the piece accuracy. At present, the accuracy and efficiency of led die bonder are limited because of the vibration of the swing-arm. In solving this problem, a three-dimensional finite-element model for swing-arm is built to provide analytical frequencies and vibration modes. Then the modal distribution and vibration mode shapes for swing-arm are obtained after analyzing the modal by ansys10.0. Finally the dynamics effects of this structure by modal frequency and vibration mode are analyzed. The modal analysis of structural would provide the reference to dynamics analysis and structural optimization for swing-arm in practical use.


1998 ◽  
Vol 120 (2) ◽  
pp. 384-391 ◽  
Author(s):  
K. I. Tzou ◽  
J. A. Wickert ◽  
A. Akay

The three-dimensional vibration of an arbitrarily thick annular disk is investigated for two classes of boundary conditions: all surfaces traction-free, and all free except for the clamped inner radius. These two models represent limiting cases of such common engineering components as automotive and aircraft disk brakes, for which existing models focus on out-of-plane bending vibration. For a disk of significant thickness, vibration modes in which motion occurs within the disk’s equilibrium plane can play a substantial role in-setting its dynamic response. Laboratory experiments demonstrate that in-plane modes exist at frequencies comparable to those of out-of-plane bending even for thickness-to-diameter ratios as small as 10−1. The equations for three-dimensional motion are discretized through the Ritz technique, yielding natural frequencies and mode shapes for coupled axial, radial, and circumferential deformations. This treatment is applicable to “disks” of arbitrary dimension, and encompasses classical models for plates, bars, cylinders, rings, and shells. The solutions so obtained converge in the limiting cases to the values expected from the classical theories, and to ones that account for shear deformation and rotary inertia. The three-dimensional model demonstrates that for geometries within the technologically-important range, the natural frequencies of certain in- and out-of-plane modes can be close to one another, or even identically repeated.


Author(s):  
Roque Corral ◽  
Juan Manuel Gallardo ◽  
Carlos Vasco

Part II of this paper compares the aerodynamic damping of a modern Low Pressure Turbine (LPT) interlock bladed-disc to the one obtained when the blades are welded in pairs through the lateral face of the shroud. The damping is computed using the linearized Reynolds averaged Navier-Stokes equations on a moving grid. It is concluded that the increase in stability of the welded-pair with respect the cantilever configuration due to the modification of the mode-shapes, is smaller than the one due to the overall raise of the reduced frequencies of a bladed-disc with an interlock design. The modification of the flutter boundaries due to mistuning effects is taken into account using the reduced order model known as the Fundamental Mistuning Model (FMM). It is shown that the modification on the stability limit of a interlock bladed-disc is negligible, while for a welded-pair configuration an increase of 0.15% on the critical damping may be expected. Two realistic welded-pair bladed-discs are analysed in this work. It is shown that both are aerodynamically unstable, which is in agreement with the experimental observations. Critical reduced frequency stability maps accounting for mistuning effects are derived for both, freestanding and welded in pairs airfoils. The airfoils are assumed to be identical and mechanically uncoupled. The stabilizing effect of mistuning is also retained in these maps.


2015 ◽  
Vol 37 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Tomasz Strzelecki ◽  
Łukasz Maniecki ◽  
Monika Bartlewska-Urban

Abstract The paper presents results of numerical computations of the filtration flow of liquid contaminated wastes through the Żelazny Most flotation tailings disposal lake. Unlike the preceding papers [5]-[7], it takes the geological structure of the subsoil into account. A three-dimensional numerical model of the lake was created for computing purposes. Data on some of the effective model parameters were acquired from laboratory tests of the material taken from the lake site. The other data were taken from the literature for media of similar properties. The results of the computations carried out using the model can be a basis for future numerical analyses aimed at determining the consolidation of the flotation tailings disposal lake and its subsoil, and the stability of the lake.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012183
Author(s):  
R Sidharth ◽  
V K Pravav ◽  
G Nitheesh Kumar ◽  
Pramod Sreedharan ◽  
G Gayathri

Abstract Two-wheeled vehicles are the most commonly used means of transportation. Every day many unspoken tragedies are happening on the roads that kill the hope of many families. The primary cause of this is the inherent instability of the two-wheeled vehicle. In this paper, the precession effect of the gyroscope is used to prevent the sideway toppling of the bicycle. When the bicycle begins to tilt, the torque created by the gyroscope’s precession effect is applied to the gimbal, and the ensuing reaction moment keeps the bicycle upright. The movements of a bicycle with a gimbal placed on the bottom are measured, and a three-dimensional model with a sliding mode controller is created and simulated.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2801
Author(s):  
Bartosz Miller ◽  
Leonard Ziemiański

The aim of the following paper is to discuss a newly developed approach for the identification of vibration mode shapes of multilayer composite structures. To overcome the limitations of the approaches based on image analysis (two-dimensional structures, high spatial resolution of mode shapes description), convolutional neural networks (CNNs) are applied to create a three-dimensional mode shapes identification algorithm with a significantly reduced number of mode shape vector coordinates. The CNN-based procedure is accurate, effective, and robust to noisy input data. The appearance of local damage is not an obstacle. The change of the material and the occurrence of local material degradation do not affect the accuracy of the method. Moreover, the application of the proposed identification method allows identifying the material degradation occurrence.


Sign in / Sign up

Export Citation Format

Share Document